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Introduction - What is Strong Chromatic Index?

Only simple graphs, that is, finite, undirected graphs without loops or
multiple edges, are considered in this thesis.

The distance between two edges e and e′ in G is the minimum k for
which there is a sequence e0, e1, . . . , ek of edges such that e0 = e,
ek = e′ and ei−1 shares a vertex with ei for 1 ≤ i ≤ k.

Figure : Example of distance = 3
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Introduction - What is Strong Chromatic Index?

A strong edge coloring of a graph G is a function that assigns to
each edge a color such that any two edges within distance two apart
must receive different colors. In other words, for any edge xy, all edges
containing x or y have different colors.

Figure : In this graph, because e1 and e3 has the same color, it is not a
strong edge coloring.
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Introduction - What is Strong Chromatic Index?

The strong chromatic index of a graph G is the minimum number
χ′s(G) of colors needed for a strong edge coloring of G.

Figure : Example: χ′
s(P4) = 3

We denote the maximum degree of a graph G by ∆(G) or ∆. For
most types of graph colorings, the first question usually asked is to find
an upper bound for the minimum number of colors necessary to color
the graph in terms of the maximum degree ∆.
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Introduction - First Studies of Strong Chromatic Index

It is first studied by Fouquet and Jolivet (1983) for cubic planar graphs.

A trivial upper bound is that χ′s(G) ≤ 2∆2 − 2∆ + 1 for any graph G
of maximum degree ∆.

Fouquet and Jolivet (1983) established a Brooks type upper bound
χ′s(G) ≤ 2∆2 − 2∆, which is not true only for G = C5. The following
conjecture was posed by Erdős and Nešeťril (1988) and revised by
Faudree, Gyárfás, Schelp and Tuza (1990):
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Introduction - First Studies of Strong Chromatic Index

Conjectures 1

For any graph G of maximum degree ∆,

χ′s(G) ≤

{
5
4∆2, if ∆ is even;
5
4∆2 − 1

2∆ + 1
4 , otherwise
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Introduction - What is Strong Chromatic Index?

The conjecture, if true, is the best possible in the sense that there are
graphs attaining the upper bound.

First, a 5-cycle C5 on {x1, x2, x3, x4, x5} has ∆(C5) = 2 and
χ′s(C5) = 5 = 5

4∆(C5)
2.

Figure : Example: χ′
s(C5) = 5
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Introduction - First Studies of Strong Chromatic Index

More generally, if ∆ is even, then the graph G obtained from C5 by
duplicating each vertex with an independent set of size 1

2∆ is a graph
of maximum degree ∆ and χ′s(G) = 5

4∆2.

If ∆ is odd, then the graph G obtained from C5 by duplicating x1 and
x3 (respectively, other vertices) with an independent set of size
1
2(∆ + 1) (respectively, 1

2(∆− 1)) is a graph of maximum degree ∆
and χ′s(G) = 5

4∆2 − 1
2∆ + 1

4 .
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Introduction - The Strong Chromatic Index for Different
Families of Graphs

For the n-cycle Cn: χ′s(C5) = 5, χ′s(Cn) = 3 if n is a multiple of 3
and χ′s(Cn) = 4 otherwise.

Figure : Examples of C5, C7, and C8

For planar graphs: Faudree et al (1990) proved that planar graphs with
maximum degree ∆ are strong (4∆ + 4)-edge-colorable. They also
exhibit a planar graph whose strong chromatic index is 4∆− 4.
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Introduction - The Strong Chromatic Index for Different
Families of Graphs

For studies on Halin graphs, a subclass of planar graphs, A natural
lower bound for the strong chromatic index is

σ(G) := max
xy∈E(G)

{dG(x) + dG(y)− 1}.

Figure : A Halin graph

Faudree et al (1990) proved that χ′s(T ) = σ(T ) for any tree T .
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Introduction - The Strong Chromatic Index for Different
Families of Graphs

In this thesis, we study strong chromatic edge coloring for cacti. A
cactus is a connected graph whose blocks are edges or cycles.

Figure : A cactus

Main Target: Find out the relationship between χ′s(G) and σ(G)
for a cactus G.
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Main Results - The Strong Chromatic Index of trees

The main theme of this thesis is to study strong chromatic colorings
on cacti, which include trees.

Thus, we start with an alternative proof for the result of strong
chromatic indices on trees, in order to use the same method for the
proof techniques of our results on cacti.
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Main Results - The Strong Chromatic Index of trees

Theorem 1

(Faudree et al (1990)) If G is a tree, then χ′s(G) = σ(G).

Proof of Theorem 1:
We shall prove the theorem by using a mathematical induction on |E(G)|.
For the case of G is a star centered at v, it is clear that
χ′s(G) = dG(v) = σ(G).

Figure : A star G
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Main Results - The Strong Chromatic Index of trees

Proof of Theorem 1: (cont’d)

Now suppose that G is not a star. Then there is an edge xy such that
G′1 and G′2 are nontrivial trees, where G− xy is the disjoint union of
G′1 and G′2 with G′1 containing x and G′2 containing y.

Figure : A tree G
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Main Results - The Strong Chromatic Index of trees

Proof of Theorem 1: (cont’d)

Suppose G1 is obtained from G′1 by adding vertex y and edge xy, and
G2 is the graph obtained from G′2 by adding vertex x and edge xy.
Now, G1 and G2 both have less numbers of edges than G.

By the induction hypothesis, graph Gi has a strong edge coloring fi
using at most σ(Gi) ≤ σ(G) colors for 1 ≤ i ≤ 2.

Figure : Two smaller tree G1 and G2
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Main Results - The Strong Chromatic Index of trees

Proof of Theorem 1: (cont’d)

If necessary, we may re-name the colors for fi and assume that
f1(xy) = f2(xy) = σ(G), edges adjacent to x but other than xy are
colored by 1, 2, . . . , dG(x)− 1 for f1, and edges adjacent to y but
other than xy are colored by
σ(G)− 1, σ(G)− 2, . . . , σ(G)− dG(y) + 1 for f2.

Figure : Two smaller tree G1 and G2
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Main Results - The Strong Chromatic Index of trees

Proof of Theorem 1: (cont’d)

Notice that f1 and f2 together form an edge coloring f of G using
σ(G) colors. To see that f is a strong edge coloring, we only have to
check that all edges containing x or y have different colors.

Since dG(x) + dG(y)− 1 ≤ σ(G), we have
dG(x)− 1 < σ(G)− dG(y) + 1 and so the desired condition holds.

As a consequence, χ′s(G) ≤ σ(G) and so χ′s(G) = σ(G). �
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Main Results - The Strong Chromatic Index of Cacti (1)

Now, we can use the same method to establish results on cacti.
We start from the easiest case.

Theorem 2

If G is a cactus in which the length of any cycle is divisible by six, then
χ′s(G) = σ(G).
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Main Results - The Strong Chromatic Index of Cacti (1)

Proof of Theorem 2:

Similar to the proof of Theorem 1, we shall prove the theorem by using
a mathematical induction on |E(G)|. If G is a tree, then the theorem
follows from Theorem 1.

If G is not a tree, we can suppose G has a cycle
C = (x1, x2, . . . , xn, x1), where xi is adjacent to xi−1 and xi+1 for
1 ≤ i ≤ n by considering the indices for the vertices modulus n.
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Main Results - The Strong Chromatic Index of Cacti (1)

Proof of Theorem 2: (cont’d)

By the assumption, we know that n is a multiple of 6. Suppose
G− E(C) is the disjoint union of G′1, G

′
2, . . . , G

′
n, where G′i contains

xi for 1 ≤ i ≤ n.
Suppose Gi is the graph obtained from G′i by adding vertices xi−1 and
xi+1 and edges xi−1xi and xixi+1 for 1 ≤ i ≤ n.

Figure : A cactus in which the length of any cycle is divisible by six
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Main Results - The Strong Chromatic Index of Cacti (1)

Proof of Theorem 2: (cont’d)

Now, each Gi has less number of edges than G. By the induction
hypothesis, graph Gi has a strong edge coloring fi using at most
σ(Gi) ≤ σ(G) colors for 1 ≤ i ≤ n.
Since n is a multiple of 6, the cycle C has a strong edge coloring f ′

using exactly 3 colors, say σ(G), σ(G)− 1, σ(G)− 2. If necessary, we
may re-name the colors for fi and assume that
fi(xi−1xi) = f ′(xi−1xi) and fi(xixi+1) = f ′(xixi+1).

Figure : A cactus divided into 6 parts
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Main Results - The Strong Chromatic Index of Cacti (1)

Proof of Theorem 2: (cont’d)

Also, for the case of i is odd, the edges adjacent to xi but other than
xi−1xi and xixi+1 are colored by 1, 2, . . . , dG(xi)− 2 for fi; and for the
case of i is even, the edges adjacent to xi but other than xi−1xi and
xixi+1 are colored by σ(G)− 3, σ(G)− 4, . . . , σ(G)− dG(xi) for fi.

Notice that f1, f2, . . . , fn together form an edge coloring f of G using
σ(G) colors. To see that f is a strong edge coloring, we only have to
check that for 1 ≤ i ≤ n all edges containing xi or xi+1 have different
colors.
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Main Results - The Strong Chromatic Index of Cacti (1)

Proof of Theorem 2: (cont’d)

Since dG(xi) + dG(xi+1)− 1 ≤ σ(G), we have
dG(xi)− 2 < σ(G)− dG(xi+1) and dG(xi+1)− 2 < σ(G)− dG(xi),
and so the desired condition holds.

As a consequence, χ′s(G) ≤ σ(G) and so χ′s(G) = σ(G). �

Figure : A cactus divided into 6 parts
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Main Results - The Strong Chromatic Index of Cacti (2)

After solving the case above, by a similar argument, we can prove a more
general case.

Theorem 3

If G is a cacti in which the length of any cycle is even, then
χ′s(G) ≤ σ(G) + 1.
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Main Results - The Strong Chromatic Index of Cacti (2)

Proof of Theorem 3:

We also prove the theorem by using a mathematical induction on
|E(G)|. If G is a tree, then the theorem follows from Theorem 1.

Now suppose G has a cycle C = (x1, x2, . . . , xn, x1), where xi is
adjacent to xi−1 and xi+1 for 1 ≤ i ≤ n by considering the indices for
the vertices modulus n.

By the assumption, we know that n is even. Suppose G− E(C) is the
disjoint union of G′1, G

′
2, . . . , G

′
n, where G′i contains xi for 1 ≤ i ≤ n.
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Main Results - The Strong Chromatic Index of Cacti (2)

Proof of Theorem 3: (cont’d)

Suppose Gi is the graph obtained from G′i by adding vertices xi−1 and
xi+1 and edges xi−1xi and xixi+1 for 1 ≤ i ≤ n.

Now, each Gi has less number of edges than G. By the induction
hypothesis, graph Gi has a strong edge coloring fi using at most
σ(Gi) + 1 ≤ σ(G) + 1 colors for 1 ≤ i ≤ n.

Since n is even, the cycle C has a strong edge coloring f ′ using 4
colors, say σ(G) + 1, σ(G), σ(G)− 1, σ(G)− 2. If necessary, we may
re-name the colors for fi and assume that fi(xi−1xi) = f ′(xi−1xi) and
fi(xixi+1) = f ′(xixi+1).
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Main Results - The Strong Chromatic Index of Cacti (2)

Proof of Theorem 3: (cont’d)

Also, for the case of i is odd, the edges adjacent to xi but other than
xi−1xi and xixi+1 are colored by 1, 2, . . . , dG(xi)− 2 for fi; and for the
case of i is even, the edges adjacent to xi but other than xi−1xi and
xixi+1 are colored by σ(G)− 3, σ(G)− 4, . . . , σ(G)− dG(xi) for fi.

Notice that f1, f2, . . . , fn together form an edge coloring f of G using
σ(G) + 1 colors. To see that f is a strong edge coloring, we only have
to check that for 1 ≤ i ≤ n all edges containing xi or xi+1 have
different colors.
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Main Results - The Strong Chromatic Index of Cacti (2)

Proof of Theorem 3: (cont’d)

Since dG(xi) + dG(xi+1)− 1 ≤ σ(G), we have
dG(xi)− 2 < σ(G)− dG(xi+1) and dG(xi+1)− 2 < σ(G)− dG(xi),
and so the desired condition holds.

As a consequence, χ′s(G) ≤ σ(G) + 1. �

Figure : An example G such that χ′
s(G) = σ(G) + 1
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Main Results - The Strong Chromatic Index of Cacti (3)

The above upper bound is not good for the case when a cactus has a cycle
of odd length. For instance, suppose G is the graph obtained from a
triangle by attaching at each vertex ∆− 2 pendent edges. Then
σ(G) = 2∆− 1 but χ′s(G) = 3∆− 3.

Figure : An example G such that χ′
s(G) > σ(G) + 1

We now only have the following upper bound.

Theorem 4

If G is a cactus and G is not C5, then χ
′
s(G) ≤ b3σ(G)−1

2 c.
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Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4:

We shall prove the theorem by using a mathematical induction on
|E(G)|. If G is a tree, then the theorem follows from Theorem 1.

Now suppose G has a cycle C = (x1, x2, . . . , xn, x1), where xi is
adjacent to xi−1 and xi+1 for 1 ≤ i ≤ n by considering the indices for
the vertices modulus n.

Without loss of generality, we may assume that dG(xi) ≤ dG(xn) for
1 ≤ i ≤ n. In particular, 2dG(x1) ≤ dG(x1) + dG(xn) ≤ σ(G) + 1 and

so dG(x1) ≤ bσ(G)+1
2 c.
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Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

Suppose G− E(C) is the disjoint union of G′1, G
′
2, . . . , G

′
n, where G′i

contains xi for 1 ≤ i ≤ n. Suppose Gi is the graph obtained from G′i
by adding vertices xi−1 and xi+1 and edges xi−1xi and xixi+1 for
1 ≤ i ≤ n.

Now, each Gi has less number of edges than G. By the induction
hypothesis, graph Gi has a strong edge coloring fi using at most
b3σ(Gi)−1

2 c ≤ b3σ(G)−1
2 c.

Let m = b3σ(G)−1
2 c. Now we consider two cases.
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Now, each Gi has less number of edges than G. By the induction
hypothesis, graph Gi has a strong edge coloring fi using at most
b3σ(Gi)−1

2 c ≤ b3σ(G)−1
2 c.

Let m = b3σ(G)−1
2 c. Now we consider two cases.
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Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

(i) If the cycle C is not C5. Then C has a strong edge coloring f ′

using at most 4 colors, say m,m− 1,m− 2,m− 3.

If necessary, we may rename the colors for fi and assume that
fi(xi−1xi) = f ′(xi−1xi) and fi(xixi+1) = f ′(xixi+1).

Also, for the case of i is odd but i 6= n, the edges adjacent to xi but
other than xi−1xi and xixi+1 are colored by 1, 2, . . . , dG(xi)− 2 for fi;
for the case of i = n is odd, the edges adjacent to xn but other than
xn−1xn and xnx1 are colored by
dG(x1)− 1, dG(x1), . . . , dG(x1) + dG(xn)− 4 for fn; and for the case
of i is even, the edges adjacent to xi but other than xi−1xi and xixi+1

are colored by m− 4,m− 5, . . . ,m− 2− dG(xi) for fi.

Liao Shao-Tang (NTU) The Strong Chromatic Index of Cacti SYC Kaohsiung, 2012 40 / 48



Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

(i) If the cycle C is not C5. Then C has a strong edge coloring f ′

using at most 4 colors, say m,m− 1,m− 2,m− 3.

If necessary, we may rename the colors for fi and assume that
fi(xi−1xi) = f ′(xi−1xi) and fi(xixi+1) = f ′(xixi+1).

Also, for the case of i is odd but i 6= n, the edges adjacent to xi but
other than xi−1xi and xixi+1 are colored by 1, 2, . . . , dG(xi)− 2 for fi;
for the case of i = n is odd, the edges adjacent to xn but other than
xn−1xn and xnx1 are colored by
dG(x1)− 1, dG(x1), . . . , dG(x1) + dG(xn)− 4 for fn; and for the case
of i is even, the edges adjacent to xi but other than xi−1xi and xixi+1

are colored by m− 4,m− 5, . . . ,m− 2− dG(xi) for fi.

Liao Shao-Tang (NTU) The Strong Chromatic Index of Cacti SYC Kaohsiung, 2012 40 / 48



Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

(i) If the cycle C is not C5. Then C has a strong edge coloring f ′

using at most 4 colors, say m,m− 1,m− 2,m− 3.

If necessary, we may rename the colors for fi and assume that
fi(xi−1xi) = f ′(xi−1xi) and fi(xixi+1) = f ′(xixi+1).

Also, for the case of i is odd but i 6= n, the edges adjacent to xi but
other than xi−1xi and xixi+1 are colored by 1, 2, . . . , dG(xi)− 2 for fi;
for the case of i = n is odd, the edges adjacent to xn but other than
xn−1xn and xnx1 are colored by
dG(x1)− 1, dG(x1), . . . , dG(x1) + dG(xn)− 4 for fn; and for the case
of i is even, the edges adjacent to xi but other than xi−1xi and xixi+1

are colored by m− 4,m− 5, . . . ,m− 2− dG(xi) for fi.

Liao Shao-Tang (NTU) The Strong Chromatic Index of Cacti SYC Kaohsiung, 2012 40 / 48



Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

(i) If the cycle C is not C5. Then C has a strong edge coloring f ′

using at most 4 colors, say m,m− 1,m− 2,m− 3.

If necessary, we may rename the colors for fi and assume that
fi(xi−1xi) = f ′(xi−1xi) and fi(xixi+1) = f ′(xixi+1).

Also, for the case of i is odd but i 6= n, the edges adjacent to xi but
other than xi−1xi and xixi+1 are colored by 1, 2, . . . , dG(xi)− 2 for fi;
for the case of i = n is odd, the edges adjacent to xn but other than
xn−1xn and xnx1 are colored by
dG(x1)− 1, dG(x1), . . . , dG(x1) + dG(xn)− 4 for fn; and for the case
of i is even, the edges adjacent to xi but other than xi−1xi and xixi+1

are colored by m− 4,m− 5, . . . ,m− 2− dG(xi) for fi.

Liao Shao-Tang (NTU) The Strong Chromatic Index of Cacti SYC Kaohsiung, 2012 40 / 48



Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

Notice that f1, f2, . . . , fn together form an edge coloring f of G using
σ(G) + 1 colors. To see that f is a strong edge coloring, we only have
to check that for 1 ≤ i ≤ n all edges containing xi or xi+1 have
different colors.

For the case of n is even or i /∈ {n− 1, n}, since
dG(xi) + dG(xi+1)− 1 ≤ σ(G) ≤ m− 2, we have
dG(xi)− 2 < m− 2− dG(xi+1) and dG(xi+1)− 2 < m− 2− dG(xi),
and so the desired condition holds.

Liao Shao-Tang (NTU) The Strong Chromatic Index of Cacti SYC Kaohsiung, 2012 41 / 48



Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

Notice that f1, f2, . . . , fn together form an edge coloring f of G using
σ(G) + 1 colors. To see that f is a strong edge coloring, we only have
to check that for 1 ≤ i ≤ n all edges containing xi or xi+1 have
different colors.

For the case of n is even or i /∈ {n− 1, n}, since
dG(xi) + dG(xi+1)− 1 ≤ σ(G) ≤ m− 2, we have
dG(xi)− 2 < m− 2− dG(xi+1) and dG(xi+1)− 2 < m− 2− dG(xi),
and so the desired condition holds.

Liao Shao-Tang (NTU) The Strong Chromatic Index of Cacti SYC Kaohsiung, 2012 41 / 48



Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

Notice that f1, f2, . . . , fn together form an edge coloring f of G using
σ(G) + 1 colors. To see that f is a strong edge coloring, we only have
to check that for 1 ≤ i ≤ n all edges containing xi or xi+1 have
different colors.

For the case of n is even or i /∈ {n− 1, n}, since
dG(xi) + dG(xi+1)− 1 ≤ σ(G) ≤ m− 2, we have
dG(xi)− 2 < m− 2− dG(xi+1) and dG(xi+1)− 2 < m− 2− dG(xi),
and so the desired condition holds.

Liao Shao-Tang (NTU) The Strong Chromatic Index of Cacti SYC Kaohsiung, 2012 41 / 48



Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

For the case of n is odd and i ∈ {n− 1, n}, since dG(x1) ≤ bσ(G)+1
2 c

and dG(xn−1) + dG(xn)− 1 ≤ σ(G), we have
dG(x1) + dG(xn)− 4 < m− 2− dG(xn−1), and so the desired
condition holds.

As a consequence, χ′s(G) ≤ m = b3σ(G)−1
2 c. �
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Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

(ii) If the cycle C is C5. That means n = 5 in this case. Then C has a
strong edge coloring f ′ using at most 5 colors, say
m,m− 1,m− 2,m− 3,m− 4. We may assume that f ′(x2x3) = m.

If necessary, we may rename the colors for fi and assume that
fi(xi−1xi) = f ′(xi−1xi) and fi(xixi+1) = f ′(xixi+1).

Also, for the case of i is odd but i 6= 5, the edges adjacent to xi but
other than xi−1xi and xixi+1 are colored by 1, 2, . . . , dG(xi)− 2 for fi;
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Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

for the case of i = 5, the edges adjacent to x5 but other than x4x5
and x5x1 are colored by m and
dG(x1)− 1, dG(x1), . . . , dG(x1) + dG(x5)− 5 for f5 (since G is not
C5, we can guarantee that color m is used in this case); and for the
case of i is even, the edges adjacent to xi but other than xi−1xi and
xixi+1 are colored by m− 5,m− 6, . . . ,m− 2− dG(xi) for fi.

Notice that f1, f2, . . . , f5 together form an edge coloring f of G using
σ(G) + 1 colors.
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Main Results - The Strong Chromatic Index of Cacti (3)

Proof of Theorem 4: (cont’d)

To see that f is a strong edge coloring, we only have to check that for
1 ≤ i ≤ 5 all edges containing xi or xi+1 have different colors.

For the case of i /∈ {4, 5}, since
dG(xi) + dG(xi+1)− 1 ≤ σ(G) ≤ m− 2 (when σ(G) ≥ 5), we have
dG(xi)− 2 < m− 2− dG(xi+1) and dG(xi+1)− 2 < m− 2− dG(xi),
and so the desired condition holds.

For the case of i ∈ {4, 5}, since dG(x1) ≤ bσ(G)+1
2 c and

dG(x4) + dG(5)− 1 ≤ σ(G), we have
dG(x1) + dG(5)− 5 < m− 2− dG(x4), and so the desired condition

holds. As a consequence, χ′s(G) ≤ m = b3σ(G)−1
2 c in this case. �
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Future Works

Future Works

For a bipartite cactus G, how to check whether χ′s(G) = σ(G) or
χ′s(G) = σ(G) + 1 ?

After solving cacti, how about block-cactus graphs ?
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