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Abstract. Let T : V → W be a surjective real linear isometry between full real

Hilbert C∗-modules over real C∗-algebras A and B, respectively. We show that

the following conditions are equivalent: (a) T is a 2-isometry; (b) T is a complete

isometry; (c) T preserves ternary products; (d) T preserves inner products; (e) T is

a module map. When A and B are commutative, we give a full description of the

structure of T .

1. Introduction

In this paper, we study surjective isometries T between real Hilbert C∗-modules.

Replacing T with the map T − T (0), we can assume that T is real linear by the

Mazur-Ulam theorem. Here is our main result.

Theorem 1.1. Let A and B be real C∗-algebras, and let V and W be full real Hilbert

C∗-modules over A and B, respectively. Let T : V → W be a surjective real linear

isometry. The following conditions are all equivalent:

(a) T is a 2-isometry;

(b) T is a complete isometry;

(c) T preserves ternary products, i.e.,

T (x〈y, z〉) = T (x)〈T (y), T (z)〉, ∀x, y, z ∈ V ;

(d) T preserves inner products with respect to a ∗-isomorphism α : A→ B, i.e.,

〈T (x), T (y)〉 = α(〈x, y〉), ∀x, y ∈ V ;

(e) T is a module map with respect to a ∗-isomorphism α : A→ B, i.e.,

T (xa) = T (x)α(a), ∀x ∈ V, a ∈ A.
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Since complex C∗-algebras and complex Hilbert C∗-modules are also real C∗-algebras

and real Hilbert C∗-modules, respectively, Theorem 1.1 covers both the real and the

complex cases. However, we can derive the complex version of Theorem 1.1 with the

results established in the literature. In fact for a surjective complex linear isometry T

between complex Hilbert C∗-modules, the equivalences (a)⇔(b)⇔(c) are proved by M.

Hamana [22, Proposition 2.1 and comments in page 82]. It is easy to see that (d)⇒(e)

(see the corresponding part in the proof of Theorem 1.1 below). The converse, (e)⇒(d),

can be found in [35, Lemma 5.10]. The implication (a)⇒(d) is showed by B. Solel [41,

Theorem 3.2 and Corollary 3.4]. On the other hand, (d) and (e) together imply (c).

Therefore, all five conditions are equivalent to each other.

When A and B are commutative complex C∗-algebras, it is showed in [26, Theorem

1] that every surjective complex linear isometry preserves inner products (in the sense

of (d)), and thus all five conditions hold automatically.

Motivated by the works studying real structures (see, e.g., [12, 28, 34, 36, 38, 5,

24, 37, 17, 21, 18, 23]) and inspired by the Mazur-Ulam theorem, which says that

every surjective isometry between normed spaces fixing the origin must be real linear,

and by the seminal works about isometries between various real or complex structures

(see, e.g., [3, 29, 7, 16, 8]), one naturally asks for a real version as stated in Theorem

1.1. However, not everything of the complex Hilbert C∗-module theory carries to real

Hilbert C∗-modules. For example, to prove (d) in the complex case, it suffices to show

that

〈T (x), T (x)〉 = α(〈x, x〉), ∀x ∈ V,

because the polarization identity

〈y, x〉 =
3∑

k=0

ik

4
〈x+ iky, x+ iky〉 (1.1)

holds for every complex Hilbert C∗-module. However, the previous polarization identity

does not make sense in the real setting. This induces some technical difficulties to

transport the established arguments from the complex case to the real case. We thus

have to develop some new tools in this paper.

A milestone result in the theory of JB∗-triples asserts that a surjective complex linear

map between JB∗-triples is an isometry if and only if it is a Jordan triple isomorphism

(cf. [29, Proposition 5.5]). It is shown in [27] that every complex Hilbert C∗-module V

over a complex C∗-algebra is a JB∗-triple with product

{x, y, z} :=
1

2
(x〈y, z〉+ z〈y, x〉) (x, y, z ∈ V ).
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Thus any surjective complex linear isometry between complex Hilbert C∗-modules

preserves the above (symmetric) JB∗-triple product. In this paper, we say that a linear

map T between Hilbert C∗-modules preserves ternary products when

T (x〈y, z〉) = T (x)〈T (y), T (z)〉.

Clearly, a linear map between Hilbert C∗-modules preserving ternary products is a

JB∗-triple homomorphism. We remark, however, that the transpose map x 7→ xt is a

(real or complex) linear surjective isometry of the (real or complex) C∗-module B(H)

over itself preserving symmetric Jordan triple products of the form:

{x, y, z} =
1

2
(xy∗z + zy∗x),

but this isometry does not satisfy any one of the five conditions stated in Theorem

1.1. Moveover, a surjective real linear isometry between real JB∗-triples does not

necessarily preserve Jordan triple products ([11]; see Example 3.2). Thus results in

this paper enrich the current literature about isometries between JB∗-structures.

We survey, in Section 2, the complexification theory of various operator systems (see,

e.g., [19, 30, 33]). In particular, we can always complexify a real C∗-algebra A to a

complex C∗-algebra Ac, and a real Hilbert A-module V to a complex Hilbert Ac-module

Vc (Proposition 2.5). Notice that, however, there is a complex Hilbert Ac-module which

is not the complexification of any real Hilbert A-module (See, e.g., [9, 39, 2]). Moreover,

the complexification of a real linear isometry T might not be isometric (see, e.g., [6,

page 227]).

We show in Section 3 that all five conditions in Theorem 1.1 are equivalent again

in the real case. Motivated by [25], in Section 4, we represent every real or complex

Hilbert C∗-module over a commutative C∗-algebra as a space of continuous sections

of a Hilbert bundle (Theorem 4.2). We then show that every surjective real linear

isometry T between real Hilbert C∗-modules over commutative real C∗-algebras carries

a weighted composition operator form (Theorem 4.5). However, unlike the complex

case, such a real linear isometry T might not be a complete isometry (Examples 4.7 and

4.8). In the case when T is a complete isometry, we will have a much better weighted

composition operator form (Theorem 4.6) though.

2. Preliminaries

For a complex Banach space E, we can naturally regard E as a real Banach space Er
with the original norm. Denote by E∗ and E∗r the dual space of E and Er, respectively.

We begin with an elementary result.
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Proposition 2.1. Let E be a complex Banach space. For any f in E∗, we define

(Re f)(x) = Re f(x), ∀x ∈ Er.

Then the map f 7→ Re f is a real linear surjective isometry from E∗ onto E∗r .

Let ϕ be a bounded linear functional of a normed space N . The set of peak points

of ϕ is the set

Peak(ϕ) := {x ∈ N : ‖x‖ = 1 and ϕ(x) = ‖ϕ‖}.

Proposition 2.2 ([31, Theorem 2]). Let N be a nonzero subspace of a normed space

M . Let ϕ ∈ N∗ with ‖ϕ‖ = 1. Assume that for all extreme point ψ in the dual unit

ball of M we have

Peak(ϕ) ⊆ Peak(ψ) =⇒ ψ |N = ϕ.

Then ϕ is an extreme point of the unit ball of N∗.

Let A be a real Banach algebra. Define

Ac := A+ iA = {a+ ib : a, b ∈ A}.

There is a unique (up to equivalence) norm on Ac such that Ac is a complex Banach

algebra containing A as a real Banach subalgebra and

‖a+ ib‖ = ‖a− ib‖, ∀ a, b ∈ A

(see, e.g. [33, Theorem 2.1.3]). A real Banach algebra A is said to be a real Banach

∗-algebra if there is a real involution ∗ on A, i.e.,

(λa+ b)∗ = λa∗ + b∗, (ab)∗ = b∗a∗ and a∗∗ := (a∗)∗ = a, ∀ a, b ∈ A, ∀λ ∈ R.

We can extend the involution of A to Ac by setting

(a+ ib)∗ := a∗ − ib∗, ∀ a, b ∈ A.

Then Ac is a complex Banach ∗-algebra. A real Banach ∗-algebra A is called a real

C∗-algebra if we can extend the norm of A to Ac such that Ac is a complex C∗-algebra.

On the other hand, complex C∗-algebras are real C∗-algebras when the scalars are

restricted to the real field R.

We can always embed a real C∗-algebra A into one with an identity. More precisely,

if A does not have an identity, we can define Ã := A⊕ R with norm

‖(a, λ)‖ = sup{‖ab+ λb‖ : b ∈ A, ‖b‖ ≤ 1}.

Then Ã is a unital real C∗-algebra. If A is unital, we set Ã = A (see, e.g. [33, page

84]).
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Proposition 2.3 ([33, Corollary 5.2.11]). Let A be a real Banach ∗-algebra. The

following statements are equivalent:

(a) A is a real C∗-algebra;

(b) A is isometrically ∗-isomorphic to a norm closed ∗-subalgebra of B(H) for a

real Hilbert space H;

(c) 1 + a∗a is invertible in Ã and ‖a∗a‖ = ‖a‖2, for all a in A.

Notice that the field C of complex numbers with the identity involution z] = z is a

real Banach ]-algebra such that |z]z| = |z|2. However, 1 + i]i = 0 is not invertible.

Definition 2.4. Let A be a real C∗-algebra. A real (right) A-module V is said to be a

real Hilbert C∗-module over A or a real Hilbert A-module if there is an A-valued inner

product 〈·, ·〉 on V such that

(1) 〈x, λy + µz〉 = λ〈x, y〉+ µ〈x, z〉, ∀x, y, z ∈ V, λ, µ ∈ R;

(2) 〈x, ya〉 = 〈x, y〉a, ∀x, y ∈ V, a ∈ A;

(3) 〈x, y〉∗ = 〈y, x〉, ∀x, y ∈ V ;

(4) 〈x, x〉 ≥ 0, ∀x ∈ V , and the equality holds exactly when x = 0;

(5) V is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2.

Roughly speaking, a real Hilbert A-module is the same as a usual complex Hilbert

C∗-module except that the underlying field is R. A real Hilbert C∗-module is said to

be full if the two-sided ideal 〈V, V 〉 := span{〈v, w〉 : v, w ∈ V } is dense in A. We

can always assume that Hilbert C∗-modules are full. Otherwise, we can replace the

underlying C∗-algebra with 〈V, V 〉.

Proposition 2.5. Let A be a real C∗-algebra and V a real Hilbert A-module. Then

there is an Ac-valued inner product on Vc := V + iV extending the original A-valued

inner product on V such that Vc is a complex Hilbert Ac-module.

Proof. For u, v, x, y in V and a, b in A, define the module action

(x+ iy)(a+ ib) := (xa− yb) + i(xb+ ya),

and inner product

〈u+ iv, x+ iy〉 := (〈u, x〉+ 〈v, y〉) + i(〈u, y〉 − 〈v, x〉).

It is easy to see that 〈·, ·〉 is an Ac-inner product on Vc except possibly the assertion

that the self-adjoint elements 〈x + iy, x + iy〉 are positive in Ac. To see this, we will
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show that f(〈x + iy, x + iy〉) ≥ 0 for all positive linear functional f on Ac. Let f be

such a functional. Then

f(〈x, y〉) = f(〈y, x〉∗) = f(〈y, x〉),

and f satisfies the Cauchy-Schwarz inequality

|f(〈x, y〉)|2 ≤ f(〈x, x〉)f(〈y, y〉),

for all x, y in V . It follows that

f(〈x+ iy, x+ iy〉) = f(〈x, x〉) + f(〈y, y〉) + if(〈x, y〉)− if(〈y, x〉)

= f(〈x, x〉) + f(〈y, y〉) + 2 Re if(〈x, y〉)

≥ f(〈x, x〉) + f(〈y, y〉)− 2|f(〈x, y〉)|

≥ f(〈x, x〉) + f(〈y, y〉)− 2f(〈x, x〉)1/2f(〈y, y〉)1/2

= (f(〈x, x〉)1/2 − f(〈y, y〉)1/2)2 ≥ 0.

Therefore, 〈x+ iy, x+ iy〉 ≥ 0 in Ac.

Define a norm on Vc by

‖x+ iy‖ = ‖〈x+ iy, x+ iy〉‖1/2.

By Proposition 2.3, A can be embedded intoB(H) for some real Hilbert spaceH. Hence

Ac = A+iA can be embedded into B(H)+iB(H) = B(Hc). Since ‖T+iS‖ = ‖T−iS‖
for all T, S in B(H), we have

‖x+ iy‖2 = ‖(〈x, x〉+ 〈y, y〉) + i(〈x, y〉 − 〈y, x〉)‖

= ‖(〈x, x〉+ 〈y, y〉)− i(〈x, y〉 − 〈y, x〉)‖ = ‖x− iy‖2.

Consequently,

max{‖x‖, ‖y‖} ≤ ‖x+ iy‖ ≤ ‖x‖+ ‖y‖.

This shows that Vc is complete. �

A real vector space V equipped with a triple product {·, ·, ·} : V × V × V → V is

called a real Jordan triple if the triple product is real trilinear and symmetric in the

outer variables, and satisfies the following identity:

{x, y, {z, u, v}} = {{x, y, z}, u, v} − {z, {y, x, u}, v}+ {z, u, {x, y, v}}. (2.1)

A complex vector space V with a triple product {·, ·, ·} which is complex linear and

symmetric in the outer variables, conjugate linear in the middle variable, and satisfies

(2.1), is called a complex Jordan triple.
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By restricting to the real scalar field, a complex Jordan triple can be regarded as a

real Jordan triple. Conversely, we can complexify a real Jordan triple (V, {·, ·, ·}) to

form a complex Jordan triple Vc := V + iV , which is furnished with the triple product

{x+ iu, y + iv, x+ iu}c (2.2)

= ({x, y, x} − {u, y, u}+ 2{x, v, u}) + i(−{x, v, x}+ {u, v, u}+ 2{x, y, u}).

One often makes use of the following identity in real Jordan triples:

2{x, y, z} = {x+ z, y, x+ z} − {x, y, x} − {z, y, z}.

It follows that the triple product in a real Jordan triple is completely determined by the

special Jordan triple product {x, y, x}. Furthermore, we have the following polarization

identity in complex Jordan triples:

4{x, y, x} = (y + x)[3] + (y − x)[3] − (y + ix)[3] − (y − iz)[3],

where x[3] := {x, x, x}. It follows that the triple product in a complex Jordan triple is

completely determined by the cubes {x, x, x}.

A complex Banach space (V, ‖ · ‖) is called a JB∗-triple if it is a complex Jordan

triple with a continuous triple product and the box operator a�a, defined by

a�a : V → V, b 7→ {a, a, b},

for each element a in V , satisfies the following conditions:

(a) a�a is a hermitian operator on V , i.e., ‖ exp it(a�a)‖ = 1 for all t in R;

(b) a�a has non-negative spectrum;

(c) ‖a�a‖ = ‖a‖2.

A real Banach space V is called a real JB∗-triple or a JB-triple if it is a real Jordan

triple such that its complexification (Vc, {·, ·, ·}c), defined as in (2.2), can be normed to

become a JB∗-triple.

Proposition 2.6 ([27, Theorem 1.4]). Every complex Hilbert C∗-module is a JB∗-triple

with respect to the Jordan triple product given by

{x, y, z} =
1

2
(x〈y, z〉+ z〈y, x〉).

Proposition 2.7. Every real Hilbert C∗-module over a real C∗-algebra is a real JB∗-

triple.
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Proof. Let A be a real C∗-algebra and V a real Hilbert A-module. Define

{x, y, z} =
1

2
(x〈y, z〉+ z〈y, x〉).

It is easy to see that (V, {·, ·, ·}) is a real Jordan triple. By Proposition 2.5, Vc = V +iV

is a complex Hilbert Ac-module. By proposition 2.6, Vc is a JB∗-triple. Thus V is a

real JB∗-triple. �

3. Isometries between real Hilbert C∗-modules

Let V be a real or complex Hilbert A-module. The space Mn(V ) of n× n matrices

with entries from V is a Hilbert Mn(A)-module with the following module action and

inner product:

(xij)(aij) = (zij), zij =
n∑
k=1

xikakj,

〈(xij), (yij)〉 = (bij), bij =
n∑
k=1

〈xki, ykj〉,

for all (xij), (yij) in Mn(V ), and (aij) in Mn(A).

A linear map T : V → W between Hilbert C∗-modules is said to be an n-isometry

if the map Tn : Mn(V )→Mn(W ) defined by

Tn((xij)ij) = (T (xij))ij

is an isometry. We call T a complete isometry if Tn is an isometry for all n = 1, 2, . . ..

Proposition 3.1 ([28, Theorem 4.8]). Let V and W be two real JB∗-triples and T a

real linear bijective map from V onto W . If T preserves Jordan triple products then T

is an isometry. Conversely, if T is an isometry then T preserves cubes, i.e.,

T ({x, x, x}) = {T (x), T (x), T (x)}, ∀x ∈ V.

Example 3.2 ([11]). Unlike the complex case, a surjective real linear isometry between

real JB∗-triples does not necessarily preserve Jordan triple products. Note that a JB∗-

triple can be viewed as a real JB∗-triple when restricted to real scalar multiplications.

Let M1,2(C) be the real JB∗-triple with triple product

{x, y, z} =
1

2
(xy∗z + zy∗x).

Let T : M1,2(C)→M1,2(C) be defined by

T (α + iβ, γ + iδ) = (α + iγ, β + iδ).
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Then T is a real linear isometry (but it is not complex linear). However, T does not

preserve Jordan triple products. For example, let x = (1 + i, 0), y = (0, 1). Then

T ({x, y, x}) = (0, 0) 6= −(i, i) = {T (x), T (y), T (x)}.

On the other hand, let E be a real JB∗-triple such that E∗∗ does not contain real or

complex rank-one Cartan factors. Then every surjective linear isometry from E onto

another real JB∗-triple preserves Jordan triple products (see [16, Theorem 3.2]). �

The following is a real version of a known result for complex C∗-algebras (see [32,

Lemma 3.4]).

Lemma 3.3. Suppose that a, b are positive elements of a real C∗-algebra A and that

‖ac‖ = ‖bc‖ for all c in A. Then a = b.

Proof. Note that a, b are again positive elements in Ac. Observe that all self-adjoint

elements in the commutative C∗-subalgebra C∗(a2−b2) of Ac are limits of real coefficient

polynomials p(a2−b2) in a2−b2 with zero constant terms. As such p(a2−b2) belonging

to A, all self-adjoint elements in C∗(a2 − b2) belong to A. Therefore, the arguments

presented in the book [32, page 25] of Lance for complex C∗-algebras can be applied

here to obtain the desired conclusion. �

Proof of Theorem 1.1. We verify the implications (b) ⇒ (a) ⇒ (c) ⇒ (d) ⇒ (b) and

(d) ⇔ (e).

Clearly, a complete isometry is a 2-isometry. That is (b) ⇒ (a).

Suppose (a), that is, T is a 2-isometry. Since real Hilbert C∗-modules are real

JB∗-triples (Proposition 2.7) and surjective linear isometries between real JB∗-triples

preserves cubes (Proposition 3.1), we have

T2(u〈u, u〉) = T2(u)〈T2(u), T2(u)〉, ∀u ∈M2(V ). (3.1)

Let u =

(
x 0

y z

)
in M2(V ). It is easy to see that

u〈u, u〉 =

(
∗ x〈y, z〉
∗ ∗

)
.

Then equation (3.1) becomes(
∗ T (x〈y, z〉)
∗ ∗

)
=

(
∗ T (x)〈T (y), T (z)〉
∗ ∗

)
.
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We have statement (c), i.e.,

T (x〈y, z〉) = T (x)〈T (y), T (z)〉, ∀x, y, z ∈ V.

We assume (c). The complexification Tc : Vc → Wc of T : V → W , defined by

Tc(x+ iy) := T (x) + iT (y), ∀x, y ∈ V,

is a complex linear bijection satisfying

Tc(xc〈yc, zc〉) = Tc(xc)〈Tc(yc), Tc(zc)〉, ∀xc, yc, zc ∈ Vc. (3.2)

Define a map αc : 〈Vc, Vc〉 → 〈Wc,Wc〉 by

αc(
n∑
i=1

〈xci, yci〉) :=
n∑
i=1

〈Tc(xci), Tc(yci)〉, ∀xci, yci ∈ Vc, i = 1, · · · , n.

Note that
n∑
i=1

〈xci, yci〉 = 0 if and only if zc(
n∑
i=1

〈xci, yci〉) = 0 for all zc in Vc. Since Tc is

bijective, the observation

Tc(zc)(
n∑
i=1

〈Tc(xci), Tc(yci)〉) =
n∑
i=1

Tc(zc〈xci, yci〉) = Tc(zc(
n∑
i=1

〈xci, yci〉)) = 0, ∀ zc ∈ Vc,

implies
n∑
i=1

〈Tc(xci), Tc(yci)〉 = 0. This argument shows that αc is well-defined, and

also injective. With (3.2) we can see that αc is a ∗-isomorphism from Ac = 〈Vc, Vc〉
onto Bc = 〈Wc,Wc〉. In particular, the restriction α := αc|A of αc is the desired

∗-isomorphism from A onto B such that statement (d) follows, i.e.,

〈T (x), T (y)〉 = α(〈x, y〉), ∀x, y ∈ V.

We assume (d). Observe that

〈T (w), T (x〈y, z〉)〉 = α(〈w, x〈y, z〉〉) = α(〈w, x〉〈y, z〉)

= α(〈w, x〉)α(〈y, z〉) = 〈T (w), T (x)〉〈T (y), T (z)〉

= 〈T (w), T (x)〈T (y), T (z)〉〉.

The surjectivity of T ensures that

T (x〈y, z〉) = T (x)〈T (y), T (z)〉〉, ∀x, y, z ∈ V.

Similarly, it is easy to see that

Tn(u〈v, w〉) = Tn(u)〈Tn(v), Tn(w)〉, ∀u, v, w ∈Mn(V ),∀n.

By Proposition 3.1, each Tn is an isometry, i.e., T is a complete isometry. This gives

(b).
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We next show that (d) ⇒ (e). It follows from (d) that

〈T (y), T (xa)〉 = α(〈y, xa〉) = α(〈y, x〉)α(a)

= 〈T (y), T (x)〉α(a) = 〈T (y), T (x)α(a)〉, ∀x, y ∈ V, ∀ a ∈ A.

It follows from the surjectivity of T that T (xa) = T (x)α(a),∀x ∈ V, ∀ a ∈ A, i.e., (e).

Finally, we suppose (e) and want to derive (d). Similar to [32, page 26], we verify

that

〈T (x), T (x)〉 = α(〈x, x〉), ∀x ∈ V. (3.3)

To this end, observe that for any a in A we have

‖〈T (x), T (x)〉1/2α(a)‖2 = ‖α(a)∗〈T (x), T (x)〉α(a)‖ = ‖〈T (xa), T (xa)〉‖ = ‖T (xa)‖2

= ‖xa‖2 = ‖〈xa, xa〉‖ = ‖α(〈xa, xa〉)‖ = ‖α(〈x, x〉)1/2α(a)‖2.

The desired assertion follows from Lemma 3.3.

On the other hand, for any x, y in V we have

〈x+ y, x+ y〉 − 〈x− y, x− y〉 = 4(〈y, x〉+ 〈x, y〉) = 8Re〈x, y〉.

Here, Re a := (a+ a∗)/2 as usual. It follows from (3.3) that

Re 〈T (x), T (y)〉 = Reα(〈x, y〉), ∀x, y ∈ V,

or

Re
[
〈T (x), T (y)〉 − α(〈x, y〉)

]
= 0, ∀x, y ∈ V.

Replacing y with ya, we have

Re
[
(〈T (x), T (y)〉 − α(〈x, y〉))α(a)

]
= 0, ∀x, y ∈ V, a ∈ A.

Since α(A) = B, we obtain in particular

Re
[
(〈T (x), T (y)〉 − α(〈x, y〉))(〈T (x), T (y)〉 − α(〈x, y〉))∗

]
= 0, ∀x, y ∈ V.

It follows the desired assertion that

〈T (x), T (y)〉 = α(〈x, y〉), ∀x, y ∈ V.

This completes the proof of the equivalence among all five conditions (a) to (e). �
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4. Isometries between real Hilbert C∗-modules over real commutative

C∗-algebras

Let X be a locally compact Hausdorff space. Denote by C0(X) the complex C∗-

algebra of complex-valued continuous functions on X vanishing at infinity. Let σ :

X → X be a homeomorphism with period 2, i.e., σ2(x) = x,∀x ∈ X. Denote by

C0(X, σ) = {f ∈ C0(X) : f(σ(x)) = f(x)},

where z is the complex conjugate of a complex number z. The space C0(X, σ) is a

commutative real C∗-algebra. It is known that every commutative real C∗-algebra is

of this form C0(X, σ) (see, e.g., [33]). Clearly, C0(X, σ)c = C0(X).

Example 4.1. Let X and Y be compact Hausdorff spaces, and let σ and τ be two

homeomorphisms on X and Y with period 2, respectively. Note that C∗-algebras are

Hilbert C∗-modules over itself with inner product

〈a, b〉 = a∗b.

So we can regard C(X, σ), C(Y, τ) as real Hilbert C∗-modules over themselves.

Consider a surjective real linear isometry T : C(X, σ) → C(Y, τ). Using a result of

M. Grzesiak in [20], we have a homeomorphism ϕ from Y onto X with σ ◦ ϕ = ϕ ◦ τ
and a continuous unimodular function h in C(Y, τ), i.e., |h(y)| = 1,∀y ∈ Y , such that

T (f) = h · f ◦ ϕ, ∀ f ∈ C(X, σ).

We can then define a ∗-isomorphism α : C(X, σ)→ C(Y, τ) by

α(g) = g ◦ ϕ.

For f, g in C(X, σ), we have

〈T (f), T (g)〉 = 〈h · f ◦ ϕ, h · g ◦ ϕ〉 = 〈f ◦ ϕ, g ◦ ϕ〉 = 〈f, g〉 ◦ ϕ = α(〈f, g〉),

i.e., T preserves inner products with respect to α. Also, T is a module map

T (fg) = h · (fg) ◦ ϕ = h · (f ◦ ϕ)(g ◦ ϕ) = T (f)α(g),

and preserves ternary products

T (f〈g, h〉) = h · (f〈g, h〉) ◦ ϕ = T (f)α(〈g, h〉) = T (f)〈T (g), T (h)〉.

Therefore, all five conditions in Theorem 1.1 hold automatically here. �
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We are going to study the case for any surjective isometry between arbitrary real

Hilbert C∗-modules over commutative real C∗-algebras. To this end, we first represent

such Hilbert C∗-modules as continuous sections of real Hilbert bundles.

Let X be a locally compact Hausdorff space. A Hilbert bundle (see, e.g. [14, 13, 15])

over X is a pair 〈HX , πX〉. Here HX is a topological space and πX is a continuous

open surjective map from HX onto X. For all x in X, the fiber Hx = π−1X (x) carries a

complex Hilbert space structure. Moreover, the following conditions are satisfied:

(HB1) Scalar multiplication, addition and the norm on HX are all continuous wherever

they are defined.

(HB2) If x ∈ X and {hi} is any net in HX such that ‖hi‖ → 0 and π(hi) → x in X,

then hi → 0x (the zero element of Hx) in HX .

A continuous section f of a Hilbert bundle 〈HX , πX〉 is a continuous function from X

into HX such that πX(f(x)) = x, i.e., f(x) ∈ Hx for all x in X. Note that the condition

(HB2) above ensures that the zero section is continuous. Denote by C0(X,HX) the

Banach space of all C0-sections of 〈HX , πX〉, i.e., those continuous sections f with

lim
x→∞
‖f(x)‖ = 0.

Note that the space C0(X,HX) is a complex C0(X)-module with pointwise module

action and inner product

(fφ)(x) = f(x)φ(x), 〈f, g〉(x) = (f(x), g(x)),

for all f, g in C0(X,HX), φ in C0(X), and x in X.

Theorem 4.2. Let V be a real Hilbert C0(X, σ)-module. Then there exists a Hilbert

bundle 〈HX , πX〉 over X, and a conjugate linear isometric isomorphism − : Hx →
Hσ(x) for each x in X, such that V is isomorphic to

C0(X,HX , σ,−) := {f ∈ C0(X,HX) : f(σ(x)) = f(x),∀x ∈ X}.

Moreover, Vc is isomorphic to C0(X,HX).

Proof. By Proposition 2.5, Vc is a Hilbert C0(X)-module. Given x ∈ X, let

Ix = {f ∈ C0(X) : f(x) = 0}.

By Cohen’s factorization theorem (see, e.g., [4, Theorem A.6.2]),

VcIx = {vcf : vc ∈ Vc, f ∈ Ix}

= {(u+ iv)(g + ih) : u, v ∈ V, g, h ∈ C0(X, σ) with g(x) + ih(x) = 0}
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is norm closed in Vc. In particular, if u ∈ VcIx and w ∈ Vc we have 〈u,w〉(x) =

〈w, u〉(x) = 0. Then Vc/VcIx is a pre-Hilbert space with inner product

〈(u1 + iv1) + VcIx, (u2 + iv2) + VcIx〉 := 〈u1 + iv1, u2 + iv2〉(x).

Denote by Hx the completion of Vc/VcIx. Let

HX :=
∐
x∈X

Hx =
{

(zx)x∈X : zx ∈ Hx

}
.

Each element u+ iv in Vc can be regarded as a section from X into HX by

(u+ iv)(x) := (u+ iv) + VcIx.

Let πX : HX → X be the canonical projection. By [15, Theorem 13.18], there is a

unique topology on HX such that 〈HX , πX〉 is a Hilbert bundle over X with C0-section

space C0(X,HX) = Vc.

Let g, h ∈ C0(X, σ). Since

(g − ih)(σ(x)) = g(σ(x))− ih(σ(x))

= g(x)− ih(x) = g(x) + ih(x) = (g + ih)(x),

we have

g + ih ∈ Ix if and only if g − ih ∈ Iσ(x).

This implies that the following map is well-defined:

− : Vc/VcIx → Vc/VcIσ(x), (u+ iv) + VcIx 7→ (u− iv) + VcIσ(x).

Moreover, this map can be extended to a conjugate-linear isometric isomorphism from

Hx onto Hσ(x). Then, for u in V , we have

u(x) = u+ VcIx = u+ VcIσ(x) = u(σ(x)),

for all x in X, i.e., V ⊆ C0(X,HX , σ,−). On the other hand, let f ∈ C0(X,HX , σ,−) ⊆
Vc, and f = u+ iv for some u, v in V . We have

u+ iv = f = f ◦ σ = (u+ iv) ◦ σ = u ◦ σ − iv ◦ σ = u− iv.

Hence v = 0 and therefore f = u ∈ V . �

By Theorem 4.2, every real Hilbert C0(X, σ)-module is of the form C0(X,HX , σ,−),

which can be considered as a real subspace of C0(X,HX)r. By Proposition 2.1,

bounded real linear functionals on C0(X,HX , σ,−) are of the form Re f for some

f in C0(X,HX)∗. We are going to characterize extreme points of the unit ball of

C0(X,HX , σ,−)∗.



ISOMETRIES OF REAL HILBERT C∗-MODULES 15

Let x ∈ X and µ ∈ Hx, denote by δx,µ the evaluation map of C0(X,HX) given by

δx,µ(f) := 〈f(x), µ〉. Let

PX = {(x, µ) ∈ X ×HX : µ ∈ Hx, ‖µ‖ = 1, and µ = µ in case σ(x) = x}.

Since − : Hx → Hσ(x) is a conjugate linear isometry, for all (x, µ) ∈ PX and f ∈
C0(X,HX , σ,−) we have

Re δσ(x),µ(f) = Re〈f(σ(x)), µ〉 = Re〈f(x), µ〉 = Re 〈f(x), µ〉 = Re δx,µ(f). (4.1)

Therefore, Re δσ(x),µ = Re δx,µ when considered as norm one linear functionals of

C0(X,HX , σ,−).

Lemma 4.3. (a) For all (x, µ) in PX , there is an f in C0(X,HX , σ,−) with ‖f‖ = 1

and f(x) = µ.

(b) For all y in X\{x, σ(x)}, there is a φ in C0(X, σ) with ‖φ‖ = 1, φ(x) = 1 and

φ(y) = 0.

(c) Let (y, ν) and (x, µ) be in PX . If (y, ν) 6= (x, µ) and (y, ν) 6= (σ(x), µ), there is an

f in C0(X,HX , σ,−) with ‖f‖ = 1 and Re δx,µ(f) = 1, but Re δy,ν(f) 6= 1.

Proof. (a) Let (x, µ) ∈ PX . If σ(x) 6= x then choose g and h from C0(X,HX) with

disjoint supports, ‖g‖ = 1 and ‖h‖ = 1 such that g(x) = µ and h(σ(x)) = µ.

Clearly, ‖g + h‖ = 1. Let

f =
1

2
(g + h+ (g + h) ◦ σ).

Then f ∈ C0(X,HX , σ,−), f(x) = µ and ‖f‖ = 1.

If σ(x) = x, and thus µ = µ, take a g from C0(X,HX) with ‖g‖ = 1 and

g(x) = µ. Let

f =
1

2
(g + g ◦ σ).

Then f ∈ C0(X,HX , σ,−), f(x) = µ and ‖f‖ = 1.

(b) The sets {x, σ(x)} and {y, σ(y)} are disjoint closed subsets of X. By Urysohn’s

Lemma there is a u in C0(X), 0 ≤ u ≤ 1, u(x) = 1 = u(σ(x)) and u(y) = 0 =

u(σ(y)). Let

φ =
1

2
(u+ u ◦ σ).

Then φ ∈ C0(X, σ), ‖φ‖ = 1, φ(x) = 1 and φ(y) = 0.

(c) By (a), let f be in C0(X,HX , σ,−) such that ‖f‖ = 1 and f(x) = µ. Then

Re δx,µ(f) = 1. We verify the assertion in three different cases below.

If y = x and Re δy,ν(f) = 1, then

1 = Re(f(y), ν) = Re(f(x), ν) = Re(µ, ν) ≤ |(µ, ν)| ≤ 1.
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This implies that ν = µ.

If y = σ(x) and Re δy,ν(f) = 1, then

1 = Re(f(y), ν) = Re(f(σ(x)), ν) = Re(µ, ν) ≤ |(µ, ν)| ≤ 1.

This implies that ν = µ.

Suppose that y /∈ {x, σ(x)}. Let φ be in C0(X, σ) such that ‖φ‖ = 1, φ(x) = 1

and φ(y) = 0 by (b). Then ‖fφ‖ = 1, fφ(x) = f(x)φ(x) = µ and

Re δx,µ(fφ) = Re(f(x)φ(x), µ) = 1.

But

Re δy,ν(fφ) = Re(f(y)φ(y), ν) = 0.

�

Lemma 4.4. Let N = C0(X,HX , σ,−) and its complexification M = C0(X,HX). The

set of extreme points of the unit ball of C0(X,HX , σ,−)∗ is

{Re δx,µ|N : (x, µ) ∈ PX}.

Moreover, Re δx,µ|N = Re δy,ν |N if and only if (y, ν) = (x, µ) or (y, ν) = (σ(x), µ)

Proof. Let ϕ be an extreme point of the unit ball of N∗. Then ϕ has an extension

to an extreme point of the unit ball of M∗
r (see, for example, [1, Proposition 3.3]).

By Proposition 2.1, this extension is the real part of an extreme point of the unit

ball of M∗. It is known that the set of extreme points of the unit ball of M∗ is

{δx,µ : x ∈ X,µ ∈ Hx, ‖µ‖ = 1} (see, e.g., [40, page 564], or the original result [10]).

Hence ϕ = Re δx,µ|N for some (x, µ) in X ×HX such that µ ∈ Hx and ‖µ‖ = 1.

We show that (x, µ) ∈ PX . This holds automatically when σ(x) 6= x. Assume

σ(x) = x. In this case, − : Hx → Hx is a conjugate-linear isomorphism from Hx onto

itself, and f(x) = f(x) for all f in N . Moreover, since 〈f, g〉 is in C0(X, σ) for all f

and g in N , we have

(f(x), g(x)) = 〈f, g〉(x) = 〈f, g〉(σ(x)) = 〈f, g〉(x) = (f(x), g(x)),

i.e., (f(x), g(x)) ∈ R for all f and g in N . Choose g + ih in C0(X,HX) with g, h in N

such that ‖g + ih‖ = 1 and (g + ih)(x) = µ. Observe that

|Re δx,µ(f)| = |Re(f(x), µ)| = |Re(f(x), g(x) + ih(x))|

= |(f(x), g(x))| ≤ ‖f‖‖g(x)‖.
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This implies that 1 = ‖Re δx,µ‖ ≤ ‖g(x)‖ ≤ ‖g‖ ≤ ‖g+ih‖ = 1. Since (g(x), h(x)) ∈ R,

we have

‖g(x)‖2 = 1 ≥ ‖g(x) + ih(x)‖2

= ‖g(x)‖2 + ‖h(x)‖2 + 2 Re i(g(x), h(x)) = ‖g(x)‖2 + ‖h(x)‖2

Hence h(x) = 0 and therefore µ = g(x) = g(x) = µ. Therefore, we again have

(x, µ) ∈ PX in this case.

Conversely, let (x, µ) ∈ PX . To show that Re δx,µ|N is an extreme point, we make

use of Proposition 2.2. Let Re δy,ν(f) = 1, for all f in N with Re δx,µ(f) = 1 = ‖f‖.
By Lemma 4.3 (c), (y, ν) = (x, µ) or (y, ν) = (σ(x), µ). If (y, ν) = (x, µ), then

Re δy,ν |N = Re δx,µ|N . If (y, ν) = (σ(x), µ), for each f in N ,

Re δy,ν(f) = Re(f(y), ν) = Re(f(σ(x)), µ)

= Re (f(x), µ) = Re(f(x), µ) = Re δx,µ(f),

i.e., Re δy,ν |N = Re δx,µ|N . By Proposition 2.2, Re δx,µ|N is an extreme point of the unit

ball of N∗.

The last assertion follows from Lemma 4.3 (c). �

Now we consider the real Hilbert C0(X, σ)-module C0(X,HX , σ,−). Let

Kx = {f(x) : f ∈ C0(X,HX , σ,−)}. (4.2)

It follows from Lemma 4.3(a) that

Hx = Kx whenever x 6= σ(x).

In the other case,

Kx = {k ∈ Hx : k = k}

is a real closed subspace of Hx such that

Hx = Kx + iKx whenever x = σ(x).

Theorem 4.5. Let T : C0(X,HX , σ,−) −→ C0(Y,HY , τ,−) be a surjective real linear

isometry. Then there exist a (not necessarily bijective or continuous) map ϕ : Y → X

and, for each y in Y , a surjective real linear isometry hy : Kϕ(y) → Ky such that

T (f)(y) = hy(f(ϕ(y))), ∀ f ∈ C0(X,HX , σ,−).
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Proof. Let

PX = {(x, µ) ∈ X ×HX : µ ∈ Hx, ‖µ‖ = 1, and µ = µ in case σ(x) = x},

PY = {(y, ν) ∈ Y ×HY : ν ∈ Hy, ‖ν‖ = 1, and ν = ν in case τ(y) = y}.

Since T is a surjective linear isometry, its dual map T ∗ is a surjective linear isometry

from C0(Y,HY , τ,−)∗ onto C0(X,HX , σ,−)∗ sending the set of extreme points of the

unit ball onto the set of extreme points of the unit ball. By Lemma 4.4, for all (y, ν) ∈
PY we have

T ∗(Re δy,ν |C0(Y,HY ,τ,−)) = Re δx,µ|C0(X,HX ,σ,−), (4.3)

for some (x, µ) in PX .

Claim 1. Let (y, ν1), (y, ν2) be in PY , and (x1, µ1), (x2, µ2) in PX such that

T ∗(Re δy,ν1|C0(Y,HY ,τ,−)) = Re δx1,µ1|C0(X,HX ,σ,−)

and

T ∗(Re δy,ν2 |C0(Y,HY ,τ,−)) = Re δx2,µ2|C0(X,HX ,σ,−).

Then x1 = x2 or x1 = σ(x2).

The assumptions indicate that

Re (T (f)(y), νi) = Re (f(xi), µi), ∀ f ∈ C0(X,HX , σ,−). (4.4)

Suppose that x1 6= x2 and x1 6= σ(x2). Let U1 and U2 be two disjoint open neigh-

borhoods of x1 and x2, respectively. By Lemma 4.3(a), for i = 1, 2, there is fi in

C0(X,HX , σ,−) such that the support of fi is contained in Ui and

(fi(xi), µi) = ‖fi‖ = 1.

By (4.4), we have ‖T (fi)(y)‖ = 1. Because fi’s have disjoint supports, ‖f1 ± f2‖ = 1

and this implies ‖T (f1 ± f2)(y)‖ ≤ 1. Since

2 = 2‖T (f1)(y)‖ = ‖T (f1 + f2)(y) + T (f1 − f2)(y)‖

≤ ‖T (f1 + f2)(y)‖+ ‖T (f1 − f2)(y)‖ ≤ 2,

we have ‖T (f1 ± f2)(y)‖ = 1. It follows from the uniform convexity of the Hilbert

space vector norm, one of

‖T (f1 + f2)(y)± T (f1 − f2)(y)‖ < 2.

This is a contradiction.

Define an equivalence relation on X by x1 ∼ x2 if and only if x1 = x2 or x1 = σ(x2).

Let X̃ = X/∼. Similarly, we define y1 ∼ y2 in Y if and only if y1 = y2 or y1 = τ(y2),
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and let Ỹ = Y/∼. Denote by [x] and [y] the equivalence classes represented by x and

y, respectively. In view of (4.1), we can define a map ϕ̃ from Ỹ into X̃ by

ϕ̃([y]) = [x] if T ∗(Re δy,ν |C0(Y,HY ,τ,−)) = Re δx,µ|C0(X,HX ,σ,−), (4.5)

where (x, µ) ∈ PX and (y, ν) ∈ PY . A new application of the claim to (T−1)∗ = (T ∗)−1

shows that the mapping ϕ̃ is a bijection. Let its inverse be ψ̃. In other words,

ψ̃([x]) = [y] if (T−1)∗(Re δx,µ|C0(X,HX ,σ,−)) = Re δy,ν |C0(Y,HY ,τ,−). (4.6)

By the Axiom of Choice, we can choose a subset Y ′ of Y such that Y ′ ∩ {y, τ(y)} =

{y′} is a singleton for each equivalence class [y] = {y, τ(y)} in Ỹ . Similarly, we can

choose a subset X ′ of X such that X ′ ∩ {x, σ(x)} = {x′} is a singleton for each

equivalence class [x] = {x, σ(x)} in X̃. Define a (not necessarily bijective or continuous)

map ϕ : Y → X such that

ϕ(y′) = x′ whenever x′ ∈ X ′, y′ ∈ Y ′, and ϕ̃([y′]) = [x′].

If y /∈ Y ′, then τ(y) ∈ Y ′ and we define ϕ(y) = σ(ϕ(τ(y))). We define ψ : X → Y in a

similar way. Clearly, [ϕ(y)] = ϕ̃([y]) and [ψ(x)] = ψ̃([x]).

Let f ∈ C0(X,HX , σ,−). Let ν =
T (f)(y)

‖T (f)(y)‖
if T (f)(y) 6= 0. Then (T (f)(y), ν) =

‖T (f)(y)‖. In the case that τ(y) = y, we have T (f)(y) = T (f)(τ(y)) = T (f)(y).

Hence, (y, ν) ∈ PY . By the definition of ϕ, there is a norm one vector µ in Hϕ(y) such

that

‖T (f)(y)‖ = Re(T (f)(y), ν) = Re(f(ϕ(y)), µ).

Hence, f(ϕ(y)) = 0 implies Tf(y) = 0. It then follows from (4.2) that we can define a

real linear map hy from Kϕ(y) into Ky such that

T (f)(y) = hy(f(ϕ(y))), ∀ f ∈ C0(X,HX , σ,−), y ∈ Y. (4.7)

In view of (4.5) we have

‖hy(f(ϕ(y)))‖ = ‖T (f)(y)‖ = (T (f)(y), ν) = Re(f(ϕ(y)), µ) ≤ ‖f(ϕ(y))‖.

This shows that

‖hy |Kϕ(y)
‖ ≤ 1, ∀y ∈ Y. (4.8)

We apply the same arguments to T−1 and ψ. Then there is a real linear map kx

from Kψ(x) into Kx such that

T−1(g)(x) = kx(g(ψ(x))), ∀g ∈ C0(Y,HY , τ,−), ∀x ∈ X.
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We have

f(x) = T−1T (f)(x) = kx(T (f)(ψ(x))) = kxhψ(x)(f(ϕ(ψ(x)))

= kxhψ(x)(f(x)) or kxhψ(x)(f(σ(x)))

and

g(y) = TT−1(g)(y) = hy(T
−1(g)(ϕ(y))) = hykϕ(y)(g(ψ(ϕ(y)))

= hykϕ(y)(g(y)) or hykϕ(y)(g(τ(y))).

This implies that all hy and kx are surjective. Since ‖g(y)‖ = ‖g(y)‖ = ‖g(τ(y)‖, with

(4.8), we have

‖g(y)‖ = ‖hykϕ(y)(g(y))‖ or ‖hykϕ(y)(g(τ(y)))‖

≤ ‖kϕ(y)(g(y))‖ or ‖kϕ(y)(g(τ(y)))‖

≤ ‖g(y)‖, ∀g ∈ C0(Y,HY , τ,−),∀x ∈ X.

Therefore, all inequalities above are exactly equalities. This forces that each kϕ(y) is

a surjective real linear isometry from Kψ(ϕ(y)) onto Kϕ(y). It turns out that each hy is

also a surjective real linear isometry. �

With routine arguments, one can find in the proof of Theorem 4.5 that the map ϕ̃ :

Y/∼ −→ X/∼ induced from a surjective real linear isometry T : C0(X,HX , σ,−) −→
C0(Y,HY , τ,−) is indeed a homeomorphism between the quotient spaces. However, we

will see in Example 4.7 that the induced symbol map ϕ can be not bijective. Moreover,

the identity σ ◦ ϕ = ϕ ◦ τ might not hold in general. When the real linear isometry is

a 2-isometry, we will have a much better weighted composition form.

Theorem 4.6. Let T : C0(X,HX , σ,−) −→ C0(Y,HY , τ,−) be a surjective real linear

2-isometry. Then there exist a homeomorphism ϕ : Y → X such that σ ◦ ϕ = ϕ ◦ τ ,

and a surjective complex linear isometry hy : Hϕ(y) → Hy for each y in Y , such that

hτ(y)(µ) = hy(µ), ∀µ ∈ Hϕ(y),

and

T (f)(y) = hy(f(ϕ(y))), ∀ f ∈ C0(X,HX , σ,−).

Proof. By Theorem 1.1, we know that T satisfies all the equivalent conditions stated

there. In particular, there is a ∗-isomorphism α : C0(Y, τ) → C0(X, σ) between the

underlying C*-algebras. It is well known that there exists a homeomorphism ϕ : Y →
X such that σ ◦ ϕ = ϕ ◦ τ and α(f) = f ◦ ϕ for all f in C0(Y, τ) (see, e.g., [33]).
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For each y in Y , for all a in C0(X, σ) such that a(ϕ(y)) = 0 we have

(Tfa)(y) = (Tf)(y)α(a)(y) = (Tf)(y)a(ϕ(y)) = 0, ∀f ∈ C0(X,HX , σ,−).

By Uryshon’s Lemma and the continuity of T , we see that

f(ϕ(y)) = 0 =⇒ Tf(y) = 0, ∀f ∈ C0(X,HX , σ,−),

This provides a real linear map hy : Kϕ(y) → Ky such that

Tf(y) = hy(f(ϕ(y)), ∀f ∈ C0(X,HX , σ,−). (4.9)

It is routine to see that all fiber maps hy’s are of norm not greater than one.

Let ψ = ϕ−1 : X → Y and notice that

T (T−1(g)b ◦ ψ) = T (T−1(g))b ◦ ψ ◦ ϕ = gb,

or equivalently,

T−1(gb) = T−1(g)b ◦ ψ = T−1(g)α−1(b), ∀g ∈ C0(Y,HY , τ,−),∀b ∈ C0(Y, τ).

Hence T−1 also satisfies the equivalent conditions stated in Theorem 1.1. Using above

arguments, we have for each x in X a real linear map kx : Kψ(x) → Kx of norm not

greater one such that

T−1g(x) = kx(g(ψ(x))), ∀g ∈ C0(Y,HY , τ,−).

This together with (4.9) gives

f(x) = T−1(Tf)(x) = kx(Tf(ψ(x))) = kxhψ(x)f(ϕ(ψ(x))) = kxhψ(x)f(x),

g(y) = T (T−1g)(y) = hy(T
−1g(ϕ(y))) = hykϕ(y)g(ψ(ϕ(y))) = hykϕ(y)g(y),

for all f in C0(X,HX , σ,−) and g in C0(Y,HY , τ,−). Since both hy, kϕ(y) have norms

not greater than one, hy = k−1ϕ(y) is a surjective real linear isometry from Kϕ(y) onto Ky.

It follows from the identity σ ◦ϕ = ϕ◦ τ that y = τ(y) if and only if ϕ(y) = σ(ϕ(y)).

When y 6= τ(y) and thus ϕ(y) 6= σ(ϕ(y)), we have Ky = Hy and Kϕ(y) = Hϕ(y). When

y = τ(y) and thus ϕ(y) = σ(ϕ(y)), we have Hy = Ky + iKy and Hϕ(y) = Kϕ(y) + iKϕ(y).

In the latter case, we can extend hy to a surjective complex linear isometry from Hy

onto Hϕ(y) such that hy(ξ + iη) = hy(ξ) + ihy(η). To see hy is complex linear in the

case when y 6= τ(y), we observe that for any a in C0(X, τ) such that a(ϕ(y)) = i, it

follows from Theorem 1.1 that

hy(if(ϕ(y))) = hy((fa)(ϕ(y))) = T (fa)(y) = Tf(y)α(a)(y)

= Tf(y)a(ϕ(y)) = iTf(y) = ihy(f(ϕ(y))), ∀f ∈ C0(X,HX , σ,−).
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This gives the complex linearity of hy. Hence we can say that hy is a surjective complex

linear isometry from Hϕ(y) onto Hy for each y in Y .

Let f be in C0(X,HX , σ,−). Then f ◦ σ = f and T (f) ◦ τ = T (f). Observe that

hτ(y)(f(ϕ(τ(y)))) = T (f)(τ(y)) = T (f)(y) = hy(f(ϕ(y))) = hy(f(σ(ϕ(y)))) (4.10)

It then follows from (4.10) and the identity σ ◦ ϕ = ϕ ◦ τ that hτ(y)(µ) = hy(µ), and

thus,

hτ(y)(µ) = hy(µ), ∀µ ∈ Kϕ(y).

Note that Hϕ(y) = Kϕ(y) whenever y 6= τ(y). The above equality also extends to Hϕ(y)

due to the construction of the map hy whenever y = τ(y). �

Following the proof of Theorem 4.2, one can show that the quotient spaces X/∼ and

Y/∼ are homeomorphic. However, it does not assure that X and Y are homeomorphic,

unless the isometry is a 2-isometry. Unlike the complex case, a surjective real linear

isometry between real Hilbert C∗-modules over commutative real C∗-algebras might

not be a 2-isometry. Moveover, the underlying locally compact spaces X and Y might

not be homeomorphic, as shown in the following counter example.

Example 4.7. Let X = {−1, 1} and Y = {0} in discrete topology. Define σ : X → X

by σ(±1) = ∓1 and τ : Y → Y by τ(0) = 0. Let A = C(X, σ) and B = C(Y, τ). In

other words, A is the real C*-algebra C and B is the real C*-algebra R.

Let H−1 = H1 = C be the one dimensional complex Hilbert space. Consider the

complex Hilbert bundle H−1
∐
H1 with base space X. Define two conjugate linear

surjective isometries h 7→ h from H±1 onto H∓1 by the usual complex conjugation.

Then the real Hilbert C*-module C(X,H−1
∐
H1, σ,−) is isomorphic to C. Indeed, if

f ∈ C(Y,H0, τ,−) with f(1) = a+ bi then f(−1) = f(1) = a− bi.

On the other hand, let H0 = C⊕2 C be the two dimensional complex Hilbert space.

Define a conjugate linear surjective isometry (h, k) 7→ (h, k) from H0 onto H0 with the

usual complex conjugation. In this way, the real Hilbert C*-module C(Y,H0, τ,−) is

isomorphic to R⊕2 R.

Consider the map T : C(X,H−1
∐
H1, σ,−)→ C(Y,H0, τ,−) defined by

f 7→ (a, b), ∀f ∈ C(X,H−1
∐

H1, σ,−) with f(1) = a+ bi.

It is easy to see that T is a real linear surjective isometry. Since X and Y are not home-

omorphic, it is no hope to get a homeomorphism symbol ϕ in the weighted composition
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operator form of T in this case. Moreover, there is no hope the identity σ ◦ ϕ = ϕ ◦ τ
to be held.

Finally, we remark that T does not satisfy any of the equivalent conditions stated in

Theorem 1.1. For example, T is not a module map with respect to any ∗-isomorphism

between A and B, as there is simply none of them. �

In the following example, we see that the fiber maps hy might not be complex linear

or conjugate linear if T is not a 2-isometry.

Example 4.8. Let X be the discrete space {−1, 1} with an involution σ(±1) = ∓1.

Let H be the two dimensional complex Hilbert space C2. Let H be the complex

Hilbert bundle H−1
∐
H1 with both H±1 = H. Define two surjective conjugate linear

isometries − : H±1 → H∓1 by (u, v) 7→ (ū, v̄).

Consider the real Hilbert A-module V = C(X,H, σ,−) over the commutative real

C∗-algebra A = C(X, σ). We consider an element f in V as a function from X =

{−1, 1} into H = C2, and write f = (f1, f2) for f in V . Note that fk(∓1) =

fk(σ(±1)) = fk(±1) in C for k = 1, 2.

Let T : V → V be defined by Tf(±1) = (f1(±1), f2(±1)) = (f1(±1), f2(∓1)). Then

T is a surjective real linear isometry of C(X,H, σ,−). We can write T in the weighted

composition form Tf(y) = h(y)f(ϕ(y)) with ϕ(±1) = ±1 and surjective real, but not

complex, linear isometries h(1) = h(2) = h : H → H defined by h(u, v) = (u, v̄).

Alternatively, we can use ϕ(±1) = ∓1 and h(u, v) = (ū, v). However, T does not

satisfy any one of the five equivalent conditions stated in Theorem 1.1.

For example, if β ∈ C(X, σ) with β(±1) = ±i then T (fβ) = (Tf)α(β) cannot hold

for any *-automorphism α of C(X, σ), as such α can only be either the one β 7→ β or

the one β 7→ β ◦ σ.

On the other hand, T is not a 2-isometry. To see this, observe that an element F in

M2(V ) carries the form F =

[
f11 f12

f21 f22

]
. Here, fij’s come from C(X,H, σ,−). Consider

F in M2(V ) with F (1) =

[
(i,−i) (1, 1)

(1, 1) (0, 0)

]
and F (−1) = F (1) =

[
(−i, i) (1, 1)

(1, 1) (0, 0)

]
. Then

T2(F )(1) =

[
(i, i) (1, 1)

(1, 1) (0, 0)

]
and T2(F )(−1) =

[
(−i,−i) (1, 1)

(1, 1) (0, 0)

]
. Their inner products

〈F, F 〉(±1) =

[
4 0

0 2

]
and 〈T2(F ), T2(F )〉(±1) =

[
4 ∓2i

±2i 2

]
.
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It follows ‖F‖ = 2 while ‖T2F‖ =
√

3 +
√

5. Thus, T2 is not an isometry. �

In general, let T be a surjective real linear isometry between real Hilbert C∗-modules

over commutative real C∗-algebras. We try to check whether T preserves the ternary

products. Assuming the weighted composition form of T as stated in Theorem 4.5, we

compute

T (f1〈f2, f3〉)(y) = h(y)(f1〈f2, f3〉)(ϕ(y)) = 〈f2(ϕ(y)), f3(ϕ(y))〉h(y)(f1(ϕ(y))),

and

T (f1)〈T (f2), T (f3)〉(y) = 〈h(y)(f2(ϕ(y)), h(y)(f3(ϕ(y)))〉h(y)(f1(ϕ(y))).

Hence the above quantities always equal exactly when

〈h(y)(f2(ϕ(y))), h(y)(f3(ϕ(y)))〉 = 〈f2(ϕ(y)), f3(ϕ(y))〉.

Since h(y) is a surjective real linear isometry, we always have

Re 〈h(y)u, h(y)v〉 = Re 〈u, v〉, ∀u, v ∈ Kϕ(y).

However, h(y) might not preserve inner products, e.g., the one given in Example 4.8.

We note that a surjective real linear isometry h : H → K between two complex

Hilbert spaces preserves inner products exactly when h is complex linear. Indeed,

complex linear isometries preserve inner products due to the polarization identity (1.1).

Conversely, suppose h preserves inner products. Then

〈h(λu), hv〉 = 〈λu, v〉 = λ〈u, v〉 = λ〈hu, hv〉 = 〈λhu, hv〉,

for all u, v in H and complex numbers λ. Since h is onto, we see that h(λu) = λhu as

asserted.

Let T be a surjective complex linear isometry between complex Hilbert C∗-modules

over complex commutative C∗-algebras. Then from the construction all fibre maps h(y)

are also complex linear. This explains why we can show that the surjective complex

linear isometry T preserves inner products in [26].

Finally, we would like to thank the referee for many helpful comments which enrich

the references, correct some mistakes, and lead to a better presentation of the paper.
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