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1. Introduction

A C∗-algebra A carries many structures. Indeed, if A is abelian, then A is (complex) 
∗-algebra isomorphic to the algebra C0(X) of continuous functions on a locally compact 
space X vanishing at infinity. In general, A is ∗-algebra isomorphic to a norm closed 
∗-subalgebra of B(H) of bounded linear operators on a complex Hilbert space H. We 
note that every ∗-algebra isomorphism of C∗-algebras is an isometry. Conversely, every 
bijective complex linear isometry Ψ between C∗-algebras also provides a Jordan ∗-algebra 
isomorphism Ψ(·)Ψ∗∗(1)−1, where Ψ∗∗ is the double dual map of Ψ. Indeed, any one of 
the metric structure, the algebra structure, and the order structure, determines A. See, 
e.g., [12,21,18,19,10,26,27].

In this paper, we are looking for minimum conditions to ensure a bijective map between 
C∗-algebras being a (∗-)algebra, or a Jordan (∗-)algebra isomorphism. These minimum 
conditions we consider are the disjointness structures of operator algebras. In the context 
of operator algebras (on Hilbert spaces) there are at least four versions of disjointness: 
zero product (ab = 0), range orthogonality (a∗b = 0), domain orthogonality (ab∗ = 0), 
and double orthogonality (a∗b = ab∗ = 0). Of course, the range and the domain orthog-
onality are symmetric, and we do have only three different variants. We call a map θ
between C∗-algebras a disjointness preserver if θ preserves any one of these four dis-
jointness.

If the algebra is abelian, then all these concepts coincide. Let θ : C0(X) → C0(Y ) be 
a bijective linear map between abelian C∗-algebras preserving zero products, i.e.,

ab = 0 =⇒ θ(a)θ(b) = 0.

Then θ is automatically continuous and assumes a weighted composition form θ(f) =
h · f ◦ σ with a continuous function h on Y , which is bounded and away from zero, and 
a homeomorphism σ from Y onto X. See Proposition 2.3 below.

Zero product and orthogonality complex linear preservers θ : A → B between general 
C∗-algebras are also well studied. In this case, all disjointness coincide on the set of pos-
itive elements. Suppose θ sends positive elements with zero products to (not necessarily 
self-adjoint) elements with zero products, i.e.,

ab = 0 =⇒ θ(a)θ(b) = 0, ∀a, b ∈ A+.

Assume that θ is bijective and continuous. Then A and B are isomorphic as Jordan 
algebras. If θ preserves zero products (resp. range orthogonality) of arbitrary elements 
in A, then A and B are isomorphic as algebras (resp. ∗-algebras). In both cases,

π(·) = θ(·)θ∗∗(1)−1

is a Jordan isomorphism and an algebra isomorphism (resp. ∗-algebra isomorphism), 
respectively. For the double orthogonality preservers, we also have a similar result. Let 
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θ : A → B be a bounded bijective linear map between C∗-algebras preserving double 
orthogonality on positive elements. Then θ = θ∗∗(1)π, where u = θ∗∗(1) is an invertible 
multiplier of B with u∗u = uu∗ being central, and π : A → B is a Jordan ∗-isomorphism. 
The proofs make heavy uses of functional calculus, thanks to the continuity of θ. See, 
e.g., [37,34,7,3,22,38,5,36,23].

Without assuming continuity, we can only utilize pure algebraic technique. A few 
partial results exist in literature, e.g., for properly infinite unital C∗-algebras [28] and 
CCR C∗-algebras with Hausdorff spectrum [25,35]. In [24], it is showed that every bi-
jective linear zero product (resp. range orthogonality) preserver θ between W ∗-algebras 
provides an algebra isomorphism (resp. a ∗-algebra isomorphism) θ(·)θ(1)−1. Systematic 
approaches can be found in [7,5].

In this paper, we study disjointness preservers of AW ∗-algebras. Recall that an 
AW ∗-algebra A is a C∗-algebra such that the right annihilator of every subset S of 
A is a (norm closed) left ideal arising from some projection p in A, i.e.,

S⊥
r = {a ∈ A : aS = 0} = Ap.

It is equivalent to saying that the left annihilator S⊥
l of every subset S of A is a right 

ideal qA for some projection q in A. In particular, every AW ∗-algebra has an identity. 
Moreover, every abelian AW ∗-algebra carries the form C(X) for a compact Stonian 
space X, i.e., the closure of any open subset of X is open. It is also plain that every 
W ∗-algebra is an AW ∗-algebra.

Our main results extend those in [24] and state

Theorem 1.1. Let θ : A → B be a bijective additive map between AW ∗-algebras.

(a) If θ preserves zero products in both directions, i.e.,

ab = 0 in A ⇐⇒ θ(a)θ(b) = 0 in B,

then A, B are ring isomorphic. If θ is also assumed complex linear, then θ(1) is a 
central invertible element, and θ(·)θ(1)−1 is an algebra isomorphism from A onto B.

(b) If θ preserves range orthogonality in both directions, i.e.,

a∗b = 0 in A ⇐⇒ θ(a)∗θ(b) = 0 in B,

then A, B are ∗-ring isomorphic. If θ is also assumed complex linear, then θ(1) is 
an invertible element, and θ(·)θ(1)−1 is a ∗-algebra isomorphism from A onto B.

It is expected that we would have a result for double orthogonality preservers of 
AW ∗-algebras as those stated in Theorem 1.1. The W ∗-algebra version is done in [6]. 
We make a conjecture to respond to this concern.
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Conjecture 1.2. Let θ : A → B be a bijective additive map between AW ∗-algebras 
preserving double orthogonality in both directions, i.e.,

a∗b = ab∗ = 0 in A ⇐⇒ θ(a)∗θ(b) = θ(a)θ(b)∗ = 0 in B.

Then A, B are Jordan ∗-ring isomorphic. If θ is also assumed complex linear, then θ(1) is 
invertible such that θ(1)∗θ(1) = θ(1)θ(1)∗ is central, and θ(·)θ(1)−1 is a Jordan ∗-algebra 
isomorphism from A onto B.

Our ultimate goal is to verify the

Conjecture 1.3. Every bijective disjointness complex linear preserver between C∗-algebras 
is automatically continuous, and arises from an algebra, a ∗-algebra, or a Jordan ∗-algebra 
isomorphism.

Summarizing the beautiful extensions of the Dye theorem [9] from Hamhalter [13,
15,14], Lindenhovius states in his thesis [29] the following structure theorem about 
AW ∗-algebras. Here we write C(A) for the set of all commutative C∗-subalgebras of A, 
and order its members by set inclusion.

Proposition 1.4 (see [29, Corollary 9.2.9]). Let A, B be AW ∗-algebras. Then the following 
statements are equivalent:

(a) A and B are Jordan ∗-algebra isomorphic.
(b) C(A) and C(B) are order isomorphic.
(c) The lattice of projections in A and that in B are orthoisomorphic.

Motivated by Proposition 1.4, we provide the following partial answer to Conjec-
ture 1.3. Here, we write C∗(h) for the abelian C∗-algebra generated by any self-adjoint 
element h.

Theorem 1.5. Let θ : A → B be a bijective complex linear disjointness preserver between 
C∗-algebras. Suppose that θ(C∗(h)) ∈ C(B), ∀h ∈ Asa. Then θ is continuous. Moreover, 
if θ preserves zero products, or preserves range/domain (resp. double) orthogonality, 
then θ∗∗(1) is an invertible central multiplier of B, and θ(·)θ∗∗(1)−1 is a ∗-algebra (resp. 
Jordan ∗-algebra) isomorphism from A onto B.

2. Preliminaries

The following results will be used in our arguments.

Proposition 2.1 (Berberian [4, Theorem 1]). An AW ∗-algebra is the ring generated by 
its projections if and only if it has no abelian summand.
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Proposition 2.2 (Chebotar, Ke, Lee and Wong [7, Theorem 2.6]). Let M be a unital ring 
generated by its idempotents and θ a zero-product preserving additive map from M into 
a ring N . Denote by N ′ the subring of N generated by θ(M). Then

(i) θ(a)θ(bc) = θ(ab)θ(c) for all a, b, c ∈ M;
(ii) θ(1)θ(a) = θ(a)θ(1) for all a ∈ M;
(iii) θ(1)θ(ab) = θ(a)θ(b) for all a, b ∈ M;
(iv) θ preserves commutativity;
(v) if θ(1) = 0 then θ(a)θ(b) = 0 for all a, b ∈ M;
(vi) if θ(1) is invertible in N , or N ′ contains an identity, then

θ(a) = θ(1)ϕ(a) for all a ∈ M,

where ϕ is a ring homomorphism from M into N .

For the abelian parts, we have the following results. Note that the spectrum X of 
any abelian AW ∗-algebra C(X) is compact, and thus realcompact. On the other hand, 
Araujo, Beckenstein and Narici provide in [2, Remarks 2] an example of an additive 
bijective zero product preserver of the one-dimensional abelian C∗-algebra C which is 
not either linear or a ring isomorphism.

Proposition 2.3. If θ : C0(X) → C0(Y ) is an additive bijective map preserving zero 
products in both directions, then the realcompactifications of the locally compact spaces 
X and Y are homeomorphic. Moreover, θ is real linear if and only if θ is continuous; in 
this case, there exist a homeomorphism σ : Y → X, a partition Y = Y1 ∪ Y2 of clopen 
subsets of Y , and a bounded continuous scalar function h on Y away from zero such that

θ(f)(y) =
{

h(y) · f(σ(y)) on Y1,

h(y) · f(σ(y)) on Y2,
∀f ∈ C0(X).

If θ is complex linear then Y = Y1, and θ(f) = h · f ◦ σ for all f in C0(X).

Proof. The first assertion is [2, Proposition 2]. It is plain that the additive map θ is 
real linear when θ is continuous. When θ is real linear, the remaining assertions can be 
obtained from the results in [16] for the compact case, and those in [11,17] for the locally 
compact case. �

In the process, we also need

Proposition 2.4 (Yen [39, Lemma 2.1]). Any a in an AW ∗-algebra A is of the form 
a = w(a∗a)1/2, where w is a partial isometry in A with sl(a) = ww∗ being the left 
support projection of a, and sr(a) = w∗w being the right support projection of a.
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Proposition 2.5 (Cuntz [8]). Every linear functional of a C∗-algebra A, which is contin-
uous on every abelian C∗-subalgebra C∗(h) generated by a self-adjoint element h in A, 
is continuous on A.

3. The results and proofs

The following proof of Theorem 1.1 is modeled on that for the corresponding results 
for W ∗-algebras in [24, Theorem 1.3]. In [24], one observes that the assertions hold for 
finite type I W ∗-algebras, and the non finite type I summands of W ∗-algebras are linear 
spans of their projections. However, we do not know if a similar property holds for 
AW ∗-algebras with no finite type I summand. Instead, we decompose an AW ∗-algebra 
into a direct sum of an abelian ideal and another ideal with no abelian summand. The 
latter is generated by its projections as a ring.

Proof of Theorem 1.1. Let z be a central projection in A such that the ideal A1 =
(1 − z)A is abelian, and the ideal A2 = zA contains no abelian summand. Similarly, 
we write B = B1 + B2 with B1 = (1 − z′)B and B2 = z′B. Note that as norm closed 
two-sided ideals of a C∗-algebra, all A1, A2, B1, B2 are self-adjoint.

(a) As A1A2 = A2A1 = {0}, we have θ(A1)θ(A2) = θ(A2)θ(A1) = 0. Let Li, Ri be 
the norm closed left and right ideals of B generated by θ(Ai), for i = 1, 2, respectively. 
It is clear that L1R2 = L2R1 = {0}. As θ−1 also preserves zero products, we have 
θ−1(L1)A2 = A1θ

−1(R2) = A2θ
−1(R1) = θ−1(L2)A1 = 0. Therefore, θ−1(Li), θ−1(Ri) ⊆

Ai for i = 1, 2, respectively. It follows that θ(Ai) = Li = Ri is a norm closed two-sided 
ideal of B, for i = 1, 2. Since B = θ(A) = θ(A1) + θ(A2), we see that θ(A1) = θ(A2)⊥l =
θ(A2)⊥r , and thus there is a central projection q in B such that θ(A1) = (1 − q)B and 
θ(A2) = qB.

By Proposition 2.1, the AW ∗-algebra A2 is generated by its projections as a ring. It 
follows from Proposition 2.2(vi), there is a ring isomorphism ϕ : A2 → qB such that

θ(a) = θ(z)ϕ(a), ∀a ∈ A2.

It follows from Proposition 2.2(ii) that θ(z) is a central element in the ideal qB, and 
thus in B. Let d ∈ A2 such that θ(d) = q. Then Proposition 2.2(iii) gives

θ(z)θ(d 2) = θ(d)2 = q.

It follows θ(z) is invertible in qB, and its inverse θ(d 2) is also a central element.
Define π2 : A2 → qB by

π2(a) = θ(d 2)θ(a), ∀a ∈ A2.

Then π2 is additive and bijective. Moreover,
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π2(z) = θ(d 2)θ(z) = q,

and by Proposition 2.2(iii) again,

π2(ab) = θ(d 2)θ(z)θ(ab)θ(d 2) = θ(d 2)θ(a)θ(b)θ(d 2) = π2(a)π2(b), ∀a, b ∈ A2.

Therefore, π2 is a ring isomorphism from A2 onto qB. If qB has an abelian summand I, 
then π−1

2 (I) will be an abelian direct summand in A2. As A2 has no nonzero abelian 
summand, we have I = {0}. In particular, θ(A2) = qB ⊆ B2. Applying the same 
arguments to θ−1, we see that θ−1(B2) ⊆ A2. Consequently, θ(A2) = B2, and hence 
θ(A1) = B1.

We have already seen that π2 is a ring isomorphism from A2 onto B2. On the other 
hand, Proposition 2.3 says that the abelian AW ∗-algebras A1 and B1 have homeomorphic 
compact spectrums, and thus they are algebra ∗-isomorphic. Therefore, A and B are ring 
isomorphic.

If θ is also assumed to be linear, then π2 is an algebra isomorphism from A2
onto B2. On the other hand, Proposition 2.3 ensures that θ(1 − z) has an inverse w
in the abelian AW ∗-algebra B1, and π1 := wθ|A1 is an algebra isomorphism from A1
onto B1. Consequently, θ(1) = θ(1 − z) + θ(z) is a central invertible element in B, and 
π(·) := θ(1)−1θ(·) = θ(·)θ(1)−1 is an algebra isomorphism from A onto B.

(b) As A∗
1A2 = {0}, we have θ(A1)∗θ(A2) = 0. Let R1, R2 be the norm closed right 

ideals of B generated by θ(A1), θ(A2), respectively. It is clear that R∗
1R2 = {0}. Moreover, 

the identity B = θ(A) = θ(A1) + θ(A2) forces R1 = θ(A1) = (R∗
2)⊥l and R2 = θ(A2) =

(R∗
1)⊥l , respectively. Let q be the projection in B such that θ(A1) = (1 − q)B and 

θ(A2) = qB.
Consider any projection e and any arbitrary elements b, c in A. Since

(ec)∗(b− eb) = (c− ec)∗eb = 0,

we have

θ(ec)∗(θ(b) − θ(eb)) = (θ(c)∗ − θ(ec)∗)θ(eb) = 0.

It follows

θ(c)∗θ(eb) = θ(ec)∗θ(eb) = θ(ec)∗θ(b).

By Proposition 2.1, we have

θ(c)∗θ(a∗b) = θ(ac)∗θ(b), ∀a ∈ A2, ∀b, c ∈ A. (3.1)

Put c = z in (3.1), we have
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θ(z)∗θ(a∗b) = θ(a)∗θ(b), ∀a ∈ A2, ∀b ∈ A. (3.2)

Let d ∈ A2 such that θ(d) = q. By (3.2), we have

θ(z)∗θ(d∗d) = θ(d)∗θ(d) = q. (3.3)

Setting b = z in (3.2), we have

θ(z)∗θ(a∗) = θ(a)∗θ(z), ∀a ∈ A2.

In particular, as θ(z) = qθ(z) ∈ θ(A2) = qB, it follows

θ(z)∗B = θ(z)∗qB = Bqθ(z) = Bθ(z)

is a two-sided self-adjoint ideal of B. Let w be the central projection in B such that wB
is the annihilator ideal (Bθ(z))⊥⊥

ll generated by Bθ(z).
Let sl(θ(z)) and sr(θ(z)) be the left and right support projections of θ(z) respectively, 

which are in B by Proposition 2.4. Observe

θ(a)∗θ(z) = θ(a)∗θ(z)sr(θ(z)), ∀a ∈ A2.

Consequently,

w ≤ sr(θ(z)). (3.4)

Since θ(z) = qθ(z), and by (3.3), q = θ(z)∗θ(d∗d) ∈ wB, we also have

sl(θ(z)) ≤ q ≤ w. (3.5)

Because sr(θ(z)) is equivalent to sl(θ(z)), they have the same central support. It then 
follows from (3.4) and (3.5) that

w = sr(θ(z)) ≥ q ≥ sl(θ(z)).

Let

q1 = (1 − z′)q ∈ B1 and w1 = (1 − z′)w ∈ B1.

Since B1 is an abelian AW*-algebra, we have q1 = w1 is a central projection in B. Note 
that the norm closed two-sided ideal q1B ⊆ qB1 = θ(A2) ∩B1, and q1θ(z) = θ(z)q1.

Argue similarly with Ψ = θ−1 : B → A, we have

Ψ(1)∗Ψ(ry) = Ψ(r)∗Ψ(y)
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for every projection r and for every element y in B. Putting y = θ(z), we get

Ψ(1)∗Ψ(rθ(z)) = Ψ(r)∗z.

If r is a projection in B with r ≤ q then r ∈ qB = θ(A2), and thus

Ψ(1)∗Ψ(rθ(z)) = Ψ(r)∗. (3.6)

Since Ψ is one-to-one, rθ(z) = 0 implies r = 0 by (3.6). Let x ∈ B such that xθ(z) =
xqθ(z) = 0. Then, θ(z)∗qx∗xqθ(z) = 0. This implies θ(z)∗rθ(z) = 0, and hence r = 0, for 
every spectral projection r of qx∗xq. Thus, xq = 0. As a result, the right multiplication 
operator Rθ(z) : q1B → q1B, sending xq1 to xq1θ(z), is one-to-one. Moreover, by (3.3)
we have

q1Bθ(z) = Bθ(z)q1 ⊇ Bθ(d∗d)∗θ(z)q1 = q1B.

So Rθ(z) is a bounded bijective linear map from q1B onto itself. Consider also the right 
multiplication operator Rθ(d∗d)∗ : q1B → q1B sending xq1 to xq1θ(d∗d)∗. The identity 
(3.3) says that

Rθ(z)Rθ(d∗d)∗ = Rq1 .

Here, Rq1 is the identity map from q1B onto q1B. Since Rθ(z) is bijective, we have

Rθ(d∗d)∗Rθ(z) = Rq1 .

In particular,

q1θ(z)θ(d∗d)∗ = q1. (3.7)

Define π21 : A2 → q1B by

π21(a) = q1θ(a)θ(d∗d)∗, ∀a ∈ A2.

It is easy to see that π21 is onto, π2(z) = q1, the identity of the AW*-algebra q1B, and 
by (3.7) and (3.2),

π21(a∗b) = q1θ(a∗b)θ(d∗d)∗

= q1θ(d∗d)θ(z)∗θ(a∗b)θ(d∗d)∗

= q1θ(d∗d)θ(a)∗θ(b)θ(d∗d)∗

= π21(a)∗π21(b), ∀a, b ∈ A2.
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In other words, π21 is a surjective additive ∗-homomorphism. It then follows that q1B ⊆
B1 contains no abelian summand, as A2 does not either. This forces q1 = 0, and thus 
θ(A2) = qB ⊆ B2. Dealing with Ψ = θ−1, we see also that Ψ(B2) ⊆ A2. It follows 
θ(A2) = B2, and thus θ(A1) = B1.

At this stage, one have already seen that q = z′ is a central projection in B. Repeating 
some of the above arguments with q1 replaced by q, one can see that

θ(z)∗θ(d∗d) = θ(z)θ(d∗d)∗ = q.

Similarly, the map π2 : A2 → B2, defined by

π2(a) = θ(a)θ(d∗d)∗, ∀a ∈ A2,

is a ∗-ring isomorphism. On the other hand, it follows from Proposition 2.3 that the 
abelian AW*-algebras A1 and B1 have homeomorphic compact spectrum, and thus they 
are ∗-algebra isomorphic. Consequently, A = A1+A2 is ∗-ring isomorphic to B = B1+B2.

If θ is also assumed linear, we see that π2 is a ∗-algebra isomorphism. Moreover, by 
Proposition 2.3 again, we see that θ(1 − z) is invertible in B1 = (1 − q)B and there 
is a ∗-algebra isomorphism π1 : A1 → B1 such that θ(a) = π1(a)θ(1 − z), ∀a ∈ A1. In 
conclusion, θ(1) is invertible in B and the map π : A → B defined by π(a) = θ(a)θ(1)−1

is a ∗-algebra isomorphism. �
As in [24], the following two results follow easily from Propositions 2.1 and 2.2, and 

the arguments in the proof of Theorem 1.1.

Proposition 3.1. Let A be an AW ∗-algebra containing no abelian summand. Let B be a 
unital algebra. Let θ : A → B be an additive map satisfying the condition:

ab = 0 in A =⇒ θ(a)θ(b) = 0 in B. (3.8)

Consider the following conditions. We have (1) =⇒ (2) =⇒ (3).

(1) θ is surjective.
(2) θ(1) is a central invertible element in B.
(3) There exists a ring homomorphism π from A into B such that

θ(a) = θ(1)π(a) = π(a)θ(1), ∀a ∈ A.

Proposition 3.2. Let A, B be two AW ∗-algebras. Suppose A contains no abelian sum-
mand. Let θ : A → B be an additive map satisfying the condition:

a∗b = 0 in A =⇒ θ(a)∗θ(b) = 0 in B. (3.9)

Consider the following conditions. We have (1) =⇒ (2) =⇒ (3).
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(1) θ is bijective, and the reverse implication in (3.9) also holds.
(2) θ(1) is invertible.
(3) There exists a ∗-ring homomorphism π from A into B such that

θ(a) = π(a)θ(1), ∀a ∈ A.

Remark 3.3. In [20], it states the observations of Marcoux [31–33] that the following 
simple unital C∗-algebras are the linear spans of projections.

• Simple purely infinite ones.
• AF-algebras with finitely many extremal tracial states.
• AT-algebras with real rank zero and finitely many extremal tracial states.
• Certain AH-algebras with real rank zero, bounded dimension growth, and finitely 

many extremal tracial states.

It is then a routine matter to apply the arguments in the proof of Theorem 1.1 to obtain 
similar results as stated in Propositions 3.1 and 3.2 for these types of C∗-algebras.

Proof of Theorem 1.5. We first show that θ is continuous on A. Let h be a self-adjoint 
element in A and C∗(h) be the abelian C∗-subalgebra of A generated by h. By assumption 
θ(C∗(h)) is an abelian C∗-subalgebra of B. Now the restriction map θ |C∗(h) of θ is a 
bijective disjointness preserving (complex) linear map between abelian C∗-algebras, and 
thus it is continuous by Proposition 2.3. Let ψ be any bounded linear functional of B. 
Then ψ ◦ θ is continuous on C∗(h). It follows from Proposition 2.5, and the closed graph 
theorem, that θ is continuous on A.

Suppose now that θ preserves zero products, range orthogonality or double orthogo-
nality. By the respective established results for bounded linear disjointness preservers of 
C∗-algebras as in [37,34,7,38,5,23] (see also [30]), we see that π(·) = θ(·)θ∗∗(1)−1 is an 
algebra (resp. ∗-algebra, Jordan ∗-algebra) isomorphism from A onto B and θ∗∗(1) is an 
invertible central multiplier (resp. invertible multiplier) of B when θ preserves zero prod-
ucts (resp. range, double orthogonality). The case for domain orthogonality preservers 
is similar.

Assume θ preserves zero products. We want to show that π is a ∗-algebra isomorphism. 
The goal is to show that π(a) is self-adjoint whenever a is. Since θ(C∗(a)) is an abelian 
C∗-algebra, θ(a), and thus π(a) = θ(a)θ∗∗(1)−1, is normal. It follows from the observation

‖eitπ(a)‖ = ‖π(eita)‖ ≤ ‖π‖, ∀t ∈ R,

that the spectrum of π(a) consists of real numbers. Thus π(a) is self-adjoint. Conse-
quently, π is a ∗-algebra isomorphism, as asserted.

Finally, we show that the invertible element u = θ∗∗(1) is a central multiplier of B
when θ preserves range, domain, or double orthogonality. In this case, π is a Jordan 
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∗-algebra isomorphism, and thus π(C∗(h)) = C∗(π(h)) for every self-adjoint h in A. 
We see that the multiplication b �→ bu sends abelian C∗-subalgebras C∗(k) to abelian 
C∗-subalgebras of B for every self-adjoint k in B.

Recall that a projection p in B∗∗ is called open by Akemann [1], if there is a net {ai}
in B such that 0 ≤ ai ↑ p. Let p, q be any open projections in B∗∗ such that pq = 0. Let 
{ai} and {bj} be nets in B such that 0 ≤ ai ↑ p and 0 ≤ bj ↑ q. In particular, aibj = 0
for all indices i, j. Being respectively the positive and negative parts of the self-adjoint 
element ai− bj , both ai and bj belong to C∗(ai− bj). Since C∗(ai− bj)u is commutative 
and u is invertible, we have

aiubj = bjuai

for all i, j. It follows

puq = qup = 0. (3.10)

Let r be the largest open projection in B∗∗ dominated by 1 − p. In other words, the 
closure r = 1 − p. Since (3.10) holds for all open projections q in B∗∗ orthogonal to p, 
we see that

pur = rup = 0.

By the proof of [1, Proposition II.12], we see that ar = 0 implies ar = 0 for any a in B. 
Recall that {ai} is a net in B such that 0 ≤ ai ↑ p. Observe that for all index i we have

0 ≤ ru∗a2
iur ≤ ru∗pur = 0.

Therefore, all aiur = 0. Since u is a multiplier of B, we have aiu ∈ B, and hence all 
aiur = 0. This gives eventually

pu(1 − p) = pur = 0.

Similarly, we have

(1 − p)up = rup = 0.

Consequently,

pu = pup = up

for every open projection p in B∗∗. Thus, u is central as asserted. �
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