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Abstract We describe the structure of all bijective maps on the cone of positive
definite operators acting on a finite and at least two-dimensional complexHilbert space
which preserve the quantum χ2

α -divergence for some α ∈ [0, 1]. We prove that any
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such transformation is necessarily implemented by either a unitary or an antiunitary
operator. Similar results concerningmapson the coneof positive semidefinite operators
as well as on the set of all density operators are also derived.

Keywords Positive definite operators · Quantum χ2
α -divergence · Preservers

Mathematics Subject Classification Primary 46N50 · 47B49

1 Introduction

The study of automorphisms, symmetries or, more generally, maps on mathematical
structures which preserve relevant characteristics (numerical or nonnumerical) of the
underlying structures is an important general task in most areas of mathematics and
its applications, hence in mathematical physics, too. In the latter discipline, one of the
most fundamental corresponding result isWigner’s celebrated theoremon the structure
of so-called quantum mechanical symmetry transformations. These transformations
are bijective maps on the set of all rank-one projections on a complex Hilbert space
(representing the pure states of a quantum system) that preserve the quantity of tran-
sition probability which is the trace of the product of rank-one projections. Wigner’s
theorem states that any such map is implemented by a unitary or antiunitary operator
on the underlying Hilbert space. Motivated by this very important result, in a series of
papers we presented several results in which we determined the structures of transfor-
mations on the sets of density operators or positive (definite or semidefinite) operators
that preserve certain kinds of quantum divergence. Below we list those results of ours
which are in close connections to the present investigations.

In order to do this, let us first fix the notation. In what followsH stands for a finite
and at least two-dimensional complex Hilbert space, d = dimH , and we denote
by L (H ) the set of all linear operators on H . The symbols L sa(H ),L +(H )

and L ++(H ) stand for the collections of all self-adjoint, positive semidefinite, and
positive definite operators on H , respectively. The linear space L (H ) is endowed
with the Hilbert–Schmidt inner product 〈XY 〉HS = Tr XY ∗, X,Y ∈ L (H ), and
||.||HS denotes the induced norm. We will also consider the operator norm onL (H )

which is denoted by ||.||op . The symbol S (H ) stands for the set of all density
operators onH , i.e., the set of all elements inL +(H ) with unit trace. The elements
ofS (H ) represent the quantum states of the quantum systemdescribed by theHilbert
space H , hence S (H ) is also called state space. The set of all nonsingular (i.e.,
invertible) elements of S (H ) is denoted by S ++ (H ) and P1(H ) stands for the
set of all rank-one projections on H .

If f : I → R is a function defined on an interval I ⊂ R, then the corresponding
standard operator function is the map

f : {A ∈ L sa(H ) : σ(A) ⊆ I } → L (H )

A =
∑

a∈σ(A)

aPa 
−→ f (A) :=
∑

a∈σ(A)

f (a)Pa,
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Maps on positive definite operators preserving the…

where σ(A) is the spectrum of A and Pa is the spectral projection corresponding to
the eigenvalue a of A.

Wigner’s above mentioned fundamental theorem states that any bijective map φ :
P1(H ) → P1(H ) which has the property that

Tr φ(P)φ(Q) = Tr PQ (P, Q ∈ P1(H ))

is necessarily of the form

φ(P) = U PU∗ (P ∈ P1(H )) (1)

with some either unitary or antiunitary operator U on H . (There is a vast literature
on this celebrated result, we only refer to Sections 0.3, 2.1 and 2.2 in the monograph
[7] and to the recent elementary proof given in [2].)

And now a short summary of our former and relating results follows. We begin
with noting that divergences, in particular, relative entropy type quantities are usually
defined on the state space or on the cones of positive definite or semidefinite operators
depending on the nature of the problem one considers. Therefore, we investigated
the corresponding preserver transformations on all those structures. Obviously, the
machinery we used in our arguments to obtain the results heavily depended on which
particular structures the maps were defined.

In the paper [13], we proved that those (a priori nonbijective) maps on the state
space S (H ) which preserve the (Umegaki) relative entropy have the structure like
in Wigner’s theorem (1), they are all implemented by unitary or antiunitary operators.
Next, in [11]we presented a far reaching generalization of the result in [13] by showing
that all maps onS (H )which preserve a so-called f -divergence ( f being an arbitrary
strictly convex real function on the set of nonnegative real numbers) are also unitary
or antiunitary similarity transformations. In [18] the same conclusion was obtained
for the same kind of preservers which are bijective and defined not on the state space
but on the whole set L +(H ) of positive semidefinite operators. (We also remark
that in the very recent paper [9] we have made some steps toward the description of
quasi-entropy preservers on positive definite cones in the setting of C∗-algebras but
the level of generality of the considered quasi-entropies falls far from what we could
consider sufficient.)

In [12], we described the structure of all bijective maps on the positive definite
coneL ++(H ) which preserve the Bregman divergence corresponding to any differ-
entiable convex function on the positive reals with derivative bounded from below and
unbounded from above. In addition, we considered the cases of the particular functions
x 
→ x log x , x > 0 (von Neumann divergence, in other words, Umegaki’s relative
entropy) and that of x 
→ − log x (Stein’s loss). In the former cases, the preservers
are all unitary–antiunitary conjugations while in the latter one they are conjugations
by any invertible linear or conjugate-linear operators on H . In the same paper, we
obtained results of similar spirit concerning maps on L ++(H ) preserving Jensen
divergence. Similar investigation was carried out in [17] for bijective transformations
on the state space preserving Bregman or Jensen divergences.
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In the present paper, we consider a relatively new and important notion of quantum
divergence and determine its preservers. We emphasize in advance that the problem
has been a real challenge, the formerly developed techniques have needed to be altered
significantly andmany new ideas have necessarily had to be brought in. Now, the basic
concept of the present paper is the following notion of quantum divergence which was
introduced in [15], see equation (7) on page 122201-3.

Definition 1 Let α ∈ [0, 1]. The quantum χ2
α -divergence of the operators A ∈

L +(H ), B ∈ L ++(H ) is defined by

Kα(A||B) := Tr B−α(A − B)Bα−1(A − B).

Clearly, we can also write this as

Kα(A||B) = Tr B−αABα−1A − 2 Tr A + Tr B.

For a singular B ∈ L +(H ) we define

Kα(A||B) := lim
ε→0

Kα(A||B + ε I ). (2)

Remark 2 In relation with the above definition, we make a few comments. First, con-
cerning the existence of the limit in (2) observe the following. In the case of a singular
B ∈ L +(H ) one can easily see that if supp (A) ⊆ supp (B) (supp (B) denoting
the support of B which is the orthogonal complement of its kernel hence equals
the range rng (B) of B), then we have Kα(A||B) = Tr B−α(A − B)Bα−1(A − B),
where the trace is taken over the subspace supp (B) of H .

If supp (A) � supp (B), then we have Kα(A||B) = ∞. Indeed, assume that the
sequence {Tr(B+εn I )−αA(B+εn I )α−1A}n∈N is bounded for some sequence {εn}n∈N
of positive numbers converging to zero. Since we have

Tr(B + εn I )
−αA(B + εn I )

α−1A = Tr
∣∣∣(B + εn I )

α−1
2 A(B + εn I )

−α
2

∣∣∣
2
,

this yields that {(B+εn I )
α−1
2 A(B+εn I )

−α
2 }n∈N is a bounded sequence in the Hilbert–

Schmidt norm and hence it has a convergent subsequence. Without serious loss of
generality we may and do assume that already the original sequence itself converges

(B + εn I )
α−1
2 A(B + εn I )

−α
2 → C.

Since

(B + εn I )
1−α
2 → B

1−α
2 , (B + εn I )

α
2 → B

α
2 ,

it immediately follows that

A = B
1−α
2 CB

α
2 .
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But this implies rng (A) ⊆ rng (B), a contradiction. Therefore, we have

Kα(A||B) =
{
Tr B−α(A − B)Bα−1(A − B), if supp (A) ⊆ supp (B)

∞, otherwise.

Since

Tr B−α(A − B)Bα−1(A − B) = Tr
∣∣∣B

α−1
2 (A − B)B

−α
2

∣∣∣
2
,

it follows easily that Kα(A||B) ≥ 0 for any A, B ∈ L +(H ) and Kα(A||B) = 0
holds if and only if A = B. Therefore, the χ2

α-divergence is always nonnegative
and take the value 0 only at identical operators. This means that Kα(.||.) is really a
divergence or, in other words, a generalized distance measure.

We also note that in the special case where α ∈ {0, 1}, the χ2
α-divergence coincides

with the so-called quadratic relative entropy. The transformations of the state space
S (H ) and those of the set S ++ (H ) of all nonsingular density operators leaving
the quadratic relative entropy invariant have been determined in [10], see Theorems 2
and 3.

In the main result of this paper, we show that all bijective maps of the positive
definite cone L ++(H ) which preserve the χ2

α-divergence for some α ∈ [0, 1] are
unitary or antiunitary similarity transformations.

We remark that in [15] an even more general concept of χ2-divergence depending
on a function parameter was also defined in the manner of f -divergences, see equation
(10) on page 122201-3. Important properties of these notions (both the more restricted
one given in Definition 1 as well as the just mentioned more general one) were inves-
tigated in several further papers. Without presuming to be exhaustive here, we refer
only to the works [3,5,6,14,16].

Before presenting our results, wewould like tomake clear a point. In the light of our
structural results given in [11] and [18] concerning maps preserving f -divergences,
one may immediately put the question that what about the preservers of the general
notion of χ2-divergence. The honest answer is that we do not know. As the reader
will see below, compared to the above listed previous results of ours, the description
even in the considered case of χ2

α-divergences is remarkably more difficult and more
complicated requiring the invention of many new ideas. Presently, we do not see any
ways how one can attack the general problem.

2 The main results

In this section we present the main results of the paper. Select an arbitrary number α ∈
[0, 1]. It is clear that for any unitary or antiunitary operatorU onH , the corresponding
conjugation

A 
→ U AU∗ (
A ∈ L +(H )

)

123

Author's personal copy



H. Y. Chen et al.

leaves the quantum χ2
α -divergence invariant. In our results, we show that the con-

verse statement is also true, i.e., the preservers of the quantum χ2
α -divergence are all

necessarily unitary or antiunitary conjugations.
The precise formulations of the statements read as follows. We begin with the case

of the positive definite cone.

Theorem 3 Let α ∈ [0, 1] be an arbitrary but fixed number and let φ : L ++(H ) →
L ++(H ) be a bijection which preserves the quantumχ2

α -divergence, that is, satisfies

Kα(φ(A)||φ(B)) = Kα(A||B)
(
A, B ∈ L ++(H )

)
.

Then there exists a unitary or an antiunitary operator U : H → H such that

φ(A) = U AU∗ (
A ∈ L ++(H )

)
.

The theorem will be proven in a separate section. We next formulate the corre-
sponding results concerning the cone of positive semidefinite operators and the state
space.

Proposition 4 Letα ∈ [0, 1] be an arbitrary but fixed number and letφ : L +(H ) →
L +(H ) be a bijection such that

Kα(φ(A)||φ(B)) = Kα(A||B)
(
A, B ∈ L +(H )

)
.

Then there is a unitary or an antiunitary operator U : H → H such that

φ(A) = U AU∗ (
A ∈ L +(H )

)
.

Proposition 5 Let α ∈ [0, 1] be an arbitrary but fixed number and let φ : S (H ) →
S (H ) be a bijection such that

Kα(φ(A)||φ(B)) = Kα(A||B) (A, B ∈ S (H )) .

Then there exists a unitary or an antiunitary operator U : H → H such that

φ(A) = U AU∗ (A ∈ S (H )) .

The proofs of the latter two propositions can be obtained by using arguments similar
to the ones that we will employ in the proof of Theorem 3. Therefore, we will only
sketch those proofs in the last part of the next section.

3 Proofs

This section is devoted to the proofs of our results. However, let us begin with the fol-
lowing remark. We have already mentioned that in our previous works [12] and [18]
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we presented structural results concerning maps on the positive definite or semidefi-
nite cones preserving Bregman divergences, or Jensen divergences, or f -divergences.
Therefore, it is necessary to make it clear that what we obtain in the present paper,
our main result Theorem 3 is a really new result, it is independent from the previous
ones. So, we need to verify that the χ2

α -divergences we consider here are neither f -
divergences (with the exception of the cases α = 0, α = 1), nor Bregman or Jensen
divergences on the set of all positive definite operators.

Indeed, these are very easy to see. As for f -divergences (see, e.g., Section 2 in [4]),
write A = t I , t > 0 and B = I into

S f (A||B) = Kα(A||B)

and obtain that f (t) = (t − 1)2, t > 0. It then follows that

S f (A||B) = K0(A||B)

holds for all A, B ∈ L ++(H ) which implies that α = 0 or α = 1.
As for Bregman divergences (see, e.g., Section 1 in [12]), we do something similar.

We write A = t I , t > 0 and B = s I , s > 0 into

H f (A||B) = Kα(A||B)

and, for s = 1, conclude that f is a quadratic function. Letting now s vary, we see that
the left-hand side of the equality above is quadratic in s, while the right-hand side is
not so. This gives a contradiction.

Finally, as for Jensen divergences, it is clear that they are symmetric in their variables
while the χ2

α -divergences are not so. Consequently, the results of the present paper are
really new. In fact, as can be seen from the arguments to be given below, the proofs
are more deep and involved than any of the previous results we have obtained so far
in this line of research.

In the next pages, we present the proof of Theorem 3. For the sake of transparency,
we divide it into three parts given in the following three subsections the first two parts
being split into several substeps.

3.1 Proof of Theorem 3: part one

In what follows, let α ∈ [0, 1] be an arbitrary but fixed number and let φ :
L ++(H ) → L ++(H ) be a bijective map such that

Kα(φ(A)||φ(B)) = Kα(A||B)
(
A, B ∈ L ++(H )

)
.

In the first part of the proof, we show that φ is a homeomorphism and it can be
extended to a map ψ on the set L +(H ). (We make a remark here: observe that
L sa(H ) is a finite dimensional linear space, hence there is only one locally convex
Hausdorff vector topology on it, the topology of the operator norm, and whenever
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we use topological notions we always mean that unique topology.) Furthermore, we
also verify that the extension ψ is bijective on L +(H ), it almost preserves the χ2

α-
divergence (for the definition of this notion see Claim 12), and it preserves the trace.

In what follows we will need the continuity properties of the χ2
α-divergences what

we collect below.

Remark 6 First, it is clear that the map

Kα(.||B) : L +(H ) → [0,∞); A 
→ Kα(A||B) = Tr B−α(A − B)Bα−1(A − B)

is continuous for any fixed B ∈ L ++(H ), and the map

Kα(A||.) : L ++(H ) → [0,∞); B 
→ Kα(A||B) = Tr B−α(A − B)Bα−1(A − B)

is continuous for any fixed A ∈ L +(H ).

We remark that Kα(.||.) is not continuous in its first variable when the second
variable is a singular element ofL +(H ). To see this simple statement, let B = P be
a rank-one projection and set An = P + (1/n)I (n ∈ N), a sequence which converges
to A = P . Then, we have Kα(An||B) = ∞ for all n ∈ N but Kα(A||B) = 0.

We next show that the χ2
α-divergence is not continuous on L +(H ) in its second

variable. We consider only the case where α = 0 or α = 1, that is when Kα(.||.) is an
f -divergence. In the remaining cases, one can argue in a similar way.
In fact, we have the discontinuity already in two dimension. To this, set

B1/2
n =

[
1 1

n

1
n

2
n2

]

for every n ∈ N and

P =
[
1 0
0 0

]
.

We clearly have Bn → P and one can verify

K0(P||Bn) = 4 + n2 − 2 +
(
1 + 2

n2
+ 4

n4

)
→ ∞

although Kα(P||P) = 0.
We mention that this example shows that the statement Proposition 2.12 in [4]

asserting that the f -divergences are continuous onL +(H ) in their second variables
is false.

We use the above-mentioned continuity properties of Kα(.||.) to prove the following
statement.

Claim 7 The map φ is a homeomorphism.
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Proof Since φ is a bijection on L ++(H ) preserving the χ2
α-divergence, so is its

inverse φ−1. Therefore, we need only to show that φ is continuous. Let {An}n∈N be a
sequence in L ++(H ) which converges to some A ∈ L ++(H ). By the continuity
of the map Kα(.||A), see Remark 6, we have

lim
n→∞ Kα (An||A) = Kα

(
lim
n→∞ An

∣∣∣
∣∣∣A

)
= Kα(A||A) = 0.

Therefore,

lim
n→∞ Kα (φ (An) ||φ (A)) = 0.

On the other hand, we compute1

Kα (φ (An) ||φ (A))

= Tr
(
φ(A)−

α
2 (φ (An) − φ(A)) φ(A)

α−1
2

)

·
(
φ(A)−

α
2 (φ (An) − φ(A)) φ(A)

α−1
2

)∗

≥
∣∣∣
∣∣∣φ(A)−

α
2 (φ (An) − φ(A)) φ(A)

α−1
2

∣∣∣
∣∣∣
2

op

≥ ||φ (An) − φ(A)||2op∣∣∣
∣∣∣φ(A)

α
2

∣∣∣
∣∣∣
2

op

∣∣∣
∣∣∣φ(A)

1−α
2

∣∣∣
∣∣∣
2

op

= ||φ (An) − φ(A)||2op
||φ(A)||op

.

(3)

The first inequality holds because the Hilbert–Schmidt norm majorizes the operator
norm, and the second inequality holds because of the submultiplicativity of the operator
norm. The term ||φ(A)||op is independent of n, hence, we conclude that φ (An) →
φ(A) proving the claim. 
�

The following assertion is a sort of identification lemma relative to the setS ++(H )

of all nonsingular states.

Lemma 8 Assume A, B ∈ L (H )+ are such that for all C ∈ S ++(H ) we have

Kα(A||C) = Kα(B||C). (4)

Then we obtain A = B.

Proof By (4) we have

Tr
(
C−αACα−1A

)
− 2 Tr A = Tr

(
C−αBCα−1B

)
− 2 Tr B

1 The reviewer of the paper kindly called our attention to the fact that an inequality stronger than (3) could
be deduced using the techniques of Lemma 5 in [16].
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for all C ∈ S ++(H ). Pick arbitrary rank-one projection P ∈ P1(H ) and let
Q = I − P . For any t ∈ (0, 1) insert t P + 1−t

d−1Q into the place of C in the displayed
formula above (d is the dimension of H ).

First consider the case where α = 0. We have

1

t
Tr APA + d − 1

1 − t
Tr AQA − 2 Tr A = 1

t
Tr BPB + d − 1

1 − t
Tr BQB − 2 Tr B.

Since the functions 1, 1
t ,

1
1−t are linearly independent over the interval (0, 1), it follows

that

Tr A2P = Tr APA = Tr BPB = Tr B2P

holds for every rank-one projection P on H which implies A2 = B2 and then we
deduce A = B. The same reasoning works for the case where α = 1.

Now, letα ∈ (0, 1). Again, the argument is practically the same, but the computation
is a bit more complicated. For P, Q given as above and for any t ∈ (0, 1) we have

1

t
Tr PAPA + t−α

(
1 − t

d − 1

)α−1

Tr PAQA

+
(
1 − t

d − 1

)−α

tα−1 Tr QAPA + d − 1

1 − t
Tr QAQA − 2 Tr A

= 1

t
Tr PBPB + t−α

(
1 − t

d − 1

)α−1

Tr PBQB

+
(
1 − t

d − 1

)−α

tα−1 Tr QBPB + d − 1

1 − t
Tr QBQB − 2 Tr B.

Using the linear independence of the functions

1,
1

t
,

1

1 − t
, t−α (1 − t)α−1 , (1 − t)−α tα−1

over the interval (0, 1) in the case where α �= 1/2 (if α = 1/2, the last two functions
are the same) we get that Tr PAPA = Tr PBPB holds for every rank-one projection
P on H which easily gives us that A = B. The case α = 1/2 can be treated in the
same way. 
�
Claim 9 Let {An}n∈N be a convergent sequence of positive definite operators on
H and let us denote its limit by A. (Clearly, A ∈ L +(H ).) Then {φ (An)}n∈N
is convergent and, obviously, limn→∞ φ (An) ∈ L +(H ). Consequently, it follows
that if {An}n∈N and {Bn}n∈N are convergent sequences of positive definite opera-
tors on H such that limn→∞ An = limn→∞ Bn, then we have limn→∞ φ (An) =
limn→∞ φ (Bn) .
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Proof Let {An}n∈N be a convergent sequence of positive definite operators onH with
limn→∞ An = A ∈ L +(H ) and let X be an arbitrary element of L ++(H ). Then,
by Remark 6,

Kα (A||X) = lim
n→∞ Kα (An||X) = lim

n→∞ Kα (φ (An) ||φ(X)) . (5)

By the inequality (3) in Claim 7, we have

Kα (φ (An) ||φ(X)) ≥ ||φ (An) − φ (X)||2op
||φ(X)||op

.

The left-hand side of the above inequality is convergent and hence bounded, so
||φ (An) − φ (X)||op is bounded as well. Therefore, the sequence {φ (An)}n∈N is
bounded. Assume that {φ (An)}n∈N has two accumulation points, say B1 and B2.

That is, we have

lim
n→∞ φ(Akn ) = B1 and lim

n→∞ φ(Aln ) = B2

for some subsequences {φ(Akn )}n∈N and {φ(Aln )}n∈N. The χ2
α-divergence is contin-

uous in its first variable when the second variable is nonsingular, Remark 6, hence

Kα (B1||φ(X)) = lim
n→∞ Kα

(
φ(Akn )||φ(X)

)

and

Kα (B2||φ(X)) = lim
n→∞ Kα

(
φ(Aln )||φ(X)

)

hold for any X ∈ L ++(H ). However, the right-hand sides of the above equa-
tions coincide as the sequence {Kα(φ (An) ||φ(X))}n∈N is convergent, see (5). So,
we deduced that

Kα (B1||φ(X)) = Kα (B2||φ(X))

for any X ∈ L ++(H ). By Lemma 8 we obtain that B1 = B2. It follows that the
sequence {φ(An)}n∈N is convergent.

We can easily show the rest of the statement, that is, that limn→∞ An =
limn→∞ Bn implies limn→∞ φ (An) = limn→∞ φ (Bn) . Indeed, assume that {An}n∈N
and {Bn}n∈N are convergent sequences of positive definite operators such that
limn→∞ An = limn→∞ Bn . Let the sequence {Cn}n∈N be defined by

C2n := An and C2n+1 := Bn (n ∈ N) .

Clearly, {Cn}n∈N is a convergent sequence of positive definite operators, hence by the
first part of this Claim (which has been already proven) the sequence {φ (Cn)}n∈N is
also convergent. Therefore, any subsequence of {φ (Cn)}n∈N is convergent and has the
same limit. In particular, we have limn→∞ φ (An) = limn→∞ φ (Bn) . 
�
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Remark 10 Observe that the statements in Claim 9 hold also for φ−1 as the latter map
is also a χ2

α -divergence preserving bijection just like φ.

Now we are in the position to define the map

ψ : L +(H ) → L +(H ); A 
→ ψ(A) := lim
Z→A,Z∈L ++(H )

φ(Z). (6)

The definition in (6) is correct by Claim 9. The map φ is continuous by Claim 7,
hence ψ(B) = φ(B) for any B ∈ L ++(H ). It follows that ψ is an extension of φ.

By Remark 10, we can also define the transformation

ψ∗ : L +(H ) → L +(H ); A 
→ ψ∗(A) := lim
Z→A,Z∈L ++(H )

φ−1(Z).

Claim 11 The above defined map ψ∗ is the inverse of ψ, that is, ψ ◦ψ∗ = ψ∗ ◦ψ =
idL +(H ). In particular, ψ is bijective.

Proof We only show that ψ∗ ◦ ψ = idL +(H ) as the equality ψ ◦ ψ∗ = idL +(H )

can be proven very similarly. Let A ∈ L +(H ) be arbitrary and let {An}n∈N be a
sequence of positive definite operators on H with limn→∞ An = A. Then

ψ(A) = lim
n→∞ φ (An)

and thus, by the definition of ψ∗, we have

ψ∗ (ψ(A)) = ψ∗ (
lim
n→∞ φ (An)

)
= lim

n→∞ φ−1 (φ (An)) = A.


�
Claim 12 The transformationψ almost preserves theχ2

α -divergence bywhatwemean
that

Kα (ψ(A)||ψ(B)) = Kα (A||B)

holds for any A ∈ L +(H ) and B ∈ L ++(H ). The same is true for the map ψ−1.

Proof Pick A ∈ L +(H ), B ∈ L ++(H ) and let {An}n∈N be an arbitrary sequence
of positive definite operators onH converging to A. Then

Kα (ψ(A)||ψ(B)) = Kα (ψ(A)||φ(B)) = Kα

(
lim
n→∞ φ (An) ||φ(B)

)

= lim
n→∞ Kα (φ (An) ||φ(B)) = lim

n→∞ Kα (An||B) = Kα (A||B) .

The verification of

Kα

(
ψ−1(A)||ψ−1(B)

)
= Kα (A||B)

(
A ∈ L +(H ), B ∈ L ++(H )

)

is similar. 
�
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Claim 13 The map φ : L ++(H ) → L ++(H ) preserves the trace, that is,

Tr φ(C) = TrC
(
C ∈ L ++(H )

)
.

Proof For any positive definite operators B,C and X on H we have

Kα (X ||B) − Kα (X ||C) = Tr B−αXBα−1X − TrC−αXCα−1X + Tr B − TrC.

Therefore, the set

{
Kα (X ||B) − Kα (X ||C)

∣∣X ∈ L ++(H )
}

is bounded from below if and only if the inequality

Tr B−αXBα−1X ≥ TrC−αXCα−1X

holds for every positive definite X. Moreover, in this case we clearly have

inf
{
Kα (X ||B) − Kα (X ||C)

∣∣X ∈ L ++(H )
} = Tr B − TrC.

Now, assume that B ≤ C holds for some positive definite operators B and C on H ,
that is, C − B is positive semidefinite. Then

{
Kα (X ||B) − Kα (X ||C)

∣∣X ∈ L ++(H )
}

is bounded from below. Indeed, by the Löwner-Heinz theorem (see, e.g., [1, The-
orem 2.6]), the map t 
→ t p is operator monotone decreasing on (0,∞) for any
p ∈ [−1, 0]. Therefore, B−α ≥ C−α and Bα−1 ≥ Cα−1 for any α ∈ [0, 1]. Con-
sequently, X

1
2 B−αX

1
2 ≥ X

1
2C−αX

1
2 and X

1
2 Bα−1X

1
2 ≥ X

1
2Cα−1X

1
2 holds for any

X ∈ L ++(H ). It is folklore that an operator A ∈ L sa(H ) is positive semidefinite
if and only if Tr AT ≥ 0 for any T ∈ L +(H ). Therefore,

Tr B−αXBα−1X = Tr
(
X

1
2 B−αX

1
2

) (
X

1
2 Bα−1X

1
2

)

≥ Tr
(
X

1
2C−αX

1
2

) (
X

1
2 Bα−1X

1
2

)
≥ Tr

(
X

1
2C−αX

1
2

) (
X

1
2Cα−1X

1
2

)

= TrC−αXCα−1X

holds, so we have the required boundedness from below.
Let us now pick some C, D ∈ L ++(H ) and choose an ε > 0 such that ε I ≤ C

and ε I ≤ D. Then, as we have seen above,

{
Kα (X ||ε I ) − Kα (X ||C)

∣∣X ∈ L ++(H )
}

is bounded from below and
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inf
{
Kα (X ||ε I ) − Kα (X ||C)

∣∣X ∈ L ++(H )
} = Tr ε I − TrC.

Similarly,

{
Kα (X ||ε I ) − Kα (X ||D)

∣∣X ∈ L ++(H )
}

is bounded from below and

inf
{
Kα (X ||ε I ) − Kα (X ||D)

∣∣X ∈ L ++(H )
} = Tr ε I − Tr D.

By the bijectivity of φ one can see that

{
Kα (X ||ε I ) − Kα (X ||C)

∣∣X ∈ L ++(H )
}

= {
Kα (X ||φ (ε I )) − Kα (X ||φ (C))

∣∣X ∈ L ++(H )
}
,

hence the latter set is also bounded from below, and its infimum is Tr ε I − TrC. On
the other hand, by the first observation of the present proof, this infimum is equal also
to Tr φ (ε I ) − Tr φ (C). Hence, we have

Tr ε I − TrC = Tr φ (ε I ) − Tr φ (C)

and very similarly we get

Tr ε I − Tr D = Tr φ (ε I ) − Tr φ (D).

Consequently,

Tr φ (C) − TrC = Tr φ (D) − Tr D.

The operators C and D were arbitrary, so we derive that

Tr φ (C) = TrC + δ
(
C ∈ L ++(H )

)

for some δ ∈ R which is independent of C. Clearly, δ < 0 is impossible and the
bijectivity of φ excludes the possibility δ > 0. So we infer that δ = 0 implying
Tr φ(C) = Tr(C) for any C ∈ L ++(H ). 
�

Claim 14 The map ψ : L +(H ) → L +(H ) also preserves the trace, that is, we
have

Trψ(A) = Tr A
(
A ∈ L +(H )

)
.
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Proof Let A ∈ L +(H ) and select a sequence {An}n∈N of positive definite operators
onH converging to A. Then by the trace-preserving property of the map φ, Claim 13,
and by the continuity of the trace functional, we have

Trψ(A) = Tr lim
n→∞ φ (An) = lim

n→∞Tr φ (An) = lim
n→∞Tr An = Tr A.


�
Remark 15 Clearly, the transformation ψ−1 also preserves the trace.

3.2 Proof of Theorem 3: part two

In this subsection let ξ : S (H ) → S (H ) be a bijective map such that
ξ(S ++(H )) = S ++(H ) and assume that

Kα(ξ(A)||ξ(B)) = Kα(A||B) (7)

holds for A ∈ S (H ) and B ∈ S ++(H ).
In what follows we prove that ξ equals a unitary or an antiunitary conjugation on

S ++(H ).

Claim 16 Let B ∈ L ++(H ) be fixed. The map

Kα(.||B) : L +(H ) → [0,∞); A 
→ Kα(A||B) = Tr B−α(A − B)Bα−1(A − B)

is strictly convex.

Proof Indeed, we have

Kα(A||B) = Tr B−αABα−1A − 2 Tr A + Tr B

=
∣∣∣
∣∣∣B− α

2 AB
α−1
2

∣∣∣
∣∣∣
2

HS
− (2 Tr A − Tr B) .

The first term is strictly convex in A since the Hilbert–Schmidt norm is strictly convex,
and the second term is affine in A. This implies the assertion.2 
�
Claim 17 The map ξ restricted toP1(H ) is a bijection from P1(H ) onto itself.

Proof We have seen in Remark 6 and Claim 16 that the map Kα(.||B) : L +(H ) →
[0,∞); A 
→ Kα(A||B) is continuous and strictly convex on L +(H ) for any fixed
B ∈ L ++(H ).Therefore, so is the restriction of Kα(.||B) to the compact and convex
setS (H ) ⊂ L +(H ) of states.

2 The reviewer of the paper pointedout that the convexity part of this statement follows also fromacelebrated
result of Lieb, see Corollary 2.1 in Convex trace functions and the Wigner–Yanase–Dyson conjecture,
Advances in Math. 11 (1973), 267–288.
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Recall that d denotes the dimension of the Hilbert space H . On the one hand, if

Kα

(
P

∣∣∣∣

∣∣∣∣
1

d
I

)
= max

{
Kα

(
X

∣∣∣∣

∣∣∣∣
1

d
I

)∣∣∣∣X ∈ S (H )

}

holds for some P ∈ S (H ), then P is an extremal point of S (H ) by the strict
convexity of Kα

(
.
∣∣∣∣ 1

d I
)
. This implies that P ∈ P1(H ). On the other hand, for any

P, Q ∈ P1(H ) there exists some unitary U ∈ L (H ) such that Q = U PU∗. By
the clear unitary invariance of the χ2

α -divergence, we have

Kα

(
Q

∣∣∣∣

∣∣∣∣
1

d
I

)
= Kα

(
U PU∗

∣∣∣∣

∣∣∣∣U
1

d
IU∗

)
= Kα

(
P

∣∣∣∣

∣∣∣∣
1

d
I

)
.

Therefore, Kα

(
.
∣∣∣∣ 1

d I
)
is constant onP1(H )which means that for any P ∈ P1(H )

we have

Kα

(
P

∣∣∣∣

∣∣∣∣
1

d
I

)
= max

{
Kα

(
X

∣∣∣∣

∣∣∣∣
1

d
I

)∣∣∣∣X ∈ S (H )

}
. (8)

We deduce that for P ∈ S (H ) we have P ∈ P1(H ) if and only if (8) holds.
By the preserver property of ξ we have

Kα

(
X

∣∣∣∣

∣∣∣∣
1

d
I

)
= Kα

(
ξ(X)

∣∣∣∣

∣∣∣∣ξ
(
1

d
I

))

for any X ∈ S (H ). Therefore,

P ∈ P1(H ) ⇒ Kα

(
P

∣∣∣∣

∣∣∣∣
1

d
I

)
= max

{
Kα

(
X

∣∣∣∣

∣∣∣∣
1

d
I

)∣∣∣∣X ∈ S (H )

}

⇒ Kα

(
ξ(P)

∣∣∣∣

∣∣∣∣ξ
(
1

d
I

))
= max

{
Kα

(
X

∣∣∣∣

∣∣∣∣ξ
(
1

d
I

))∣∣∣∣X ∈ S (H )

}

⇒ ξ(P) ∈ P1(H ),

because the map Kα(.||ξ( 1d I )) is also strictly convex by Claim 16.
Consequently, we obtain that ξ (P1(H )) ⊆ P1(H ). In the above argument, we

can replace ξ by ξ−1, hence ξ−1 (P1(H )) ⊆ P1(H ) also holds. This means that ξ
maps P1(H ) bijectively onto itself. 
�

We note that the computation rule

Tr RXRY = Tr RX · Tr RY (9)

can be verified by easy computation for any operators X,Y ∈ L (H ) and for any
rank-one projection R ∈ P1(H ). This will be used in the sequel several times.
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For the sake of simplicity, let us introduce the notation

K ∗
α(X ||Y ) := Kα(X ||Y ) + 1

(
X ∈ L +(H ),Y ∈ L ++(H )

)
.

An easy but useful consequence of (9) is that for any nonsingular density operator D
with spectral resolution

S ++(H ) � D =
m∑

j=1

λ j Pj , λ1 > λ2 > · · · > λm > 0,
m∑

j=1

λ j rank
(
Pj

) = 1

(10)

we have for every rank-one projection R on H that

K ∗
α(R||D) = Tr RD−αRDα−1 = Tr RD−α · Tr RDα−1

=
⎛

⎝
m∑

j=1

(Tr RPj )λ
−α
j

⎞

⎠
(

m∑

k=1

(Tr RPk)λ
α−1
k

)
. (11)

The formula (11) clearly shows that

min
{
K ∗

α (X ||D)
∣∣X ∈ P1(H )

} = 1

λ1
(12)

and

max
{
K ∗

α (X ||D)
∣∣X ∈ P1(H )

} = 1

λm
. (13)

Moreover, we have

K ∗
α(R||D) = min

{
K ∗

α (X ||D)
∣∣X ∈ P1(H )

}
if and only if R ≤ P1, (14)

and

K ∗
α(R||D) = max

{
K ∗

α (X ||D)
∣∣X ∈ P1(H )

}
if and only if R ≤ Pm . (15)

Claim 18 The map ξ|P1(H ) : P1(H ) → P1(H ) preserves orthogonality in both
directions.

Proof Clearly, since ξ and ξ−1 have similar properties, it is enough to prove that
ξ preserves orthogonality only in one direction, i.e., it maps orthogonal rank-one
projections to orthogonal ones.

Select P, Q ∈ P1(H ) such that PQ = 0, and let

B := λP + ν(I − (P + Q)) + μQ, (16)
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where 1 > λ > ν > μ > 0, and λ + (d − 2)ν + μ = 1. (Recall that d denotes the
dimension of the Hilbert space H .) The operator B defined in (16) is a nonsingular
element of S (H ), hence by (12) and (14), we have

min
{
K ∗

α (X ||B)
∣∣X ∈ P1(H )

} = 1

λ
,

and the minimum is taken if and only if X = P, and by (13) and (15) we also know
that

max
{
K ∗

α (X ||B)
∣∣X ∈ P1(H )

} = 1

μ
,

and the maximum is taken if and only if X = Q.

The transformation ξ maps the set P1(H ) bijectively onto itself, see Claim 17,
and satisfies (7). Hence

min
{
K ∗

α (X ||ξ(B))
∣∣X ∈ P1(H )

} = 1

λ
= K ∗

α (ξ(P)||ξ(B))

and

max
{
K ∗

α (X ||ξ(B))
∣∣X ∈ P1(H )

} = 1

μ
= K ∗

α (ξ(Q)||ξ(B)) .

Clearly, ξ(B) is an invertible density operator. By (14) and (15), K ∗
α (R||ξ(B)) is

minimal if and only if R ≤ Pγ , where Pγ stands for the eigenprojection of ξ(B)

corresponding to the greatest eigenvalue, and K ∗
α (R||ξ(B)) is maximal if and only if

R ≤ Pσ ,where Pσ stands for the eigenprojectionof ξ(B) corresponding to the smallest
eigenvalue. (Observe that the greatest and the smallest eigenvalues of ξ(B) cannot
coincide since K ∗

α (X ||ξ(B)) takes the different values 1/λ, 1/μ as X runs through
the set of rank-one projections.) It follows that ξ(P) and ξ(Q) are subprojections of
two different eigenprojections of ξ(B) and hence we have ξ(P)ξ(Q) = 0. 
�
Claim 19 The map ξ|P1(H ) : P1(H ) → P1(H ) preserves the transition proba-
bilities meaning that it satisfies

Tr ξ(P)ξ(R) = Tr PR (P, R ∈ P1(H )) .

Proof Let P ∈ P1(H ) and set

C := λP + μ(I − P),

where 1 > λ > μ > 0, and λ + (d − 1)μ = 1. Let R ∈ P1(H ). Then

R = P ⇐⇒ K ∗
α (R||C) = min

{
K ∗

α (X ||C)
∣∣X ∈ P1(H )

}

⇐⇒ K ∗
α (ξ(R)||ξ(C)) = min

{
K ∗

α (X ||ξ(C))
∣∣X ∈ P1(H )

}
.
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This means that ξ(P) is the one and only rank-one projection which is majorized by
the eigenprojection of ξ(C) corresponding to the greatest eigenvalue.

We can easily see by (13), (15) that K ∗
α(R||C) = 1

μ
for any R ∈ P1(H ) which is

orthogonal to P.On the other hand, by Claim 18, we have PR = 0 ⇐⇒ ξ(P)ξ(R) =
0, so K ∗

α (X ||ξ(C)) = 1
μ
holds for any rank-one projection X which is orthogonal to

ξ(P). This means by (12)-(15) that

ξ(C) = λξ(P) + μ (I − ξ(P)) .

By (11) we get that

K ∗
α (ξ(R)||ξ(C)) = (

Tr ξ(R)ξ(P)λ−α + (1 − Tr ξ(R)ξ(P))μ−α
)

×
(
Tr ξ(R)ξ(P)λα−1 + (1 − Tr ξ(R)ξ(P))μα−1

)

for any R ∈ P1(H ). Comparing this to another consequence of (11), namely,

K ∗
α (R||C) = (

Tr RPλ−α + (1 − Tr RP)μ−α
) (

Tr RPλα−1 + (1 − Tr RP)μα−1
)

,

from the equality K ∗
α (ξ(R)||ξ(C)) = K ∗

α (R||C) we can deduce that

Tr ξ(P)ξ(R) = Tr PR

holds for any R ∈ P1(H ). Indeed, to see this, it is enough to check that
K ∗

α (ξ(R)||ξ(C)) is strictly monotone decreasing in Tr ξ(P)ξ(R) and K ∗
α (R||C) is

strictly monotone decreasing in Tr PR. 
�
Let us now recallWigner’s famous theorem on the structure of quantummechanical

symmetry transformations. It states that any bijection of P1(H ) onto itself which
preserves transition probabilities (i.e., preserves the trace of the products of rank-
one projections) is necessarily implemented by a unitary or an antiunitary operator.
Therefore, we get that

ξ|P1(H )(R) = URU∗ (R ∈ P1(H ))

for some unitary or antiunitary operator U acting on H .

We intend to show that ξ(A) = U AU∗ holds for any A ∈ S ++(H ). We mention
that the core idea of the proof of this step appeared in [8], and that technique was
further developed in [17]. Let us define the map ξ ′ : S (H ) → S (H ) by

ξ ′(A) := U∗ξ(A)U (A ∈ S (H )) .

By the assumptions, ξ ′ has the same properties as ξ plus it has the additional property
that it acts identically on the set P1(H ). Therefore,

Kα

(
P||ξ ′(A)

) = Kα

(
ξ ′(P)||ξ ′(A)

) = Kα (P||A) (17)
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holds for any A ∈ S ++(H ) and for any P ∈ P1(H ). Considering the Eq. (12),
it is clear by (17) that that the greatest eigenvalues of A and ξ ′(A) coincide and, by
(14), it is also clear that the eigenprojections corresponding to the greatest eigenvalues
coincide, too.

The formula (11) shows that, similarly to the Eqs. (12) and (14), the following holds
(here we use the notation of (10), A being in the place of D):

min
{
K ∗

α (X ||A)
∣∣X ∈ P1(H ), X P1 = 0

} = 1

λ2

and
K ∗

α(R||A) = min
{
K ∗

α (X ||A)
∣∣X ∈ P1(H ), X P1 = 0

}

⇐⇒ RP1 = 0, R ≤ P2.

By (17) this means that the second greatest eigenvalues of A and ξ ′(A) coincide, and
so do the corresponding eigenprojections. Continuing this process, after finitely many
steps we get that ξ ′(A) = A. Therefore, ξ ′ acts as the identity on the set of nonsingular
densities, as well. This means that ξ(A) = U AU∗ for any A ∈ S ++(H ) as asserted
in the beginning of this subsection.

3.3 Proof of Theorem 3: part three

We are now in a position to complete the proof of Theorem 3. In what follows let φ,
ψ be as in Sect. 3.1. Introduce the notation

L +(H )λ := {
A ∈ L +(H ) : Tr A = λ

}
.

Observe that L +(H )1 equals the state space which is denoted by S (H ). Further-
more, observe that by the trace-preserving property given in Claim 14, ψ restricted
toL +(H )λ is a bijection of that set onto itself. In particular, ψ restricted toS (H )

is a bijection from S (H ) onto itself. Straightforward computations show that the
χ2

α -divergence is homogeneous, that is,

Kα (λA||λB) = λKα (A||B)
(
A, B ∈ L +(H ), λ ∈ [0,∞)

)
.

For any λ ∈ (0,∞), let us define a map ψλ in the following way:

ψλ : S (H ) → S (H ), A 
→ ψλ(A) := 1

λ
ψ (λA) .

The map ψλ satisfies (7) because

Kα (ψλ(A)||ψλ(B)) = Kα

(
1

λ
ψ (λA) ||1

λ
ψ (λB)

)

= 1

λ
Kα (ψ (λA) ||ψ (λB)) = 1

λ
Kα (λA||λB) = Kα (A||B)
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holds for any A ∈ S (H ), B ∈ S ++(H ) and λ ∈ (0,∞). Moreover, by the
bijectivity and the trace-preserving property ofψ , themapψλ is a bijection onS (H ).

Moreover, it acts bijectively on S ++(H ), because

ψλ(A) = 1

λ
ψ (λA) = 1

λ
φ (λA)

holds for any invertible density A and λ ∈ (0,∞), and φ is a trace-preserving bijection
on L ++(H ). So, the results in Sect. 3.2 apply and for any λ ∈ (0,∞) we have that
there is a unitary or an antiunitary operator Uλ onH such that

φ(λA) = Uλ(λA)U∗
λ

holds for any nonsingular density operator A on H . We need to show that Uλ does
not depend essentially on the parameter λ meaning that all Uλ’s induce the same
similarity transformation. In order to verify this, fix positive real numbersλ,μ. Choose
A, B ∈ S ++(H ). We have

Kα(λA||μB) = Kα (φ(λA)||φ(μB)) = Kα

(
Uλ(λA)U∗

λ ||Uμ(μB)U∗
μ

)

from which we easily deduce that

Tr B−αABα−1A = TrUμB
−αU∗

μUλAU
∗
λUμB

α−1U∗
μUλAU

∗
λ

holds for any A, B ∈ S ++(H ). Denoting V = U∗
μUλ we have

Tr B−αABα−1A = Tr B−αV AV ∗Bα−1V AV ∗

for all A, B ∈ S ++(H ). Fix B ∈ S ++(H ). Then, first for all A ∈ S ++(H ) and
then for all A ∈ L ++(H ) and finally for all A ∈ L +(H ) we have

Tr B−αABα−1A = Tr(V ∗B−αV )A(V ∗Bα−1V )A.

Linearizing this equality, i.e., writing A+A′ in the place of Awe infer that the equality

Tr B−αABα−1A′ + Tr B−αA′Bα−1A

= Tr(V ∗B−αV )A(V ∗Bα−1V )A′ + Tr(V ∗B−αV )A′(V ∗Bα−1V )A

is valid for any A, A′ ∈ L +(H ). We can rewrite this in the following way:

Tr
(
B−αABα−1 + Bα−1AB−α

)
A′

= Tr
(
(V ∗B−αV )A(V ∗Bα−1V ) + (V ∗Bα−1V )A(V ∗B−αV )

)
A′
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for any A, A′ ∈ L +(H ) and then for any A, A′ ∈ L (H ), too (every operator is a
linear combination of positive semidefinite ones). It easily follows that

B−αABα−1 + Bα−1AB−α

= (V ∗B−αV )A(V ∗Bα−1V ) + (V ∗Bα−1V )A(V ∗B−αV )

holds for any A ∈ L (H ) and B ∈ S ++(H ). It is easy to see that, plugging
B−1/Tr B−1 into the place of B, we next have

BαAB1−α + B1−αABα = (V ∗BαV )A(V ∗B1−αV ) + (V ∗B1−αV )A(V ∗BαV )

for any A ∈ L (H ) and for any B ∈ L ++(H ) and then for any B ∈ L +(H ), too.
Assume 0 < α < 1. Then it follows that for any projection P on H we have

2PAP = 2(V ∗PV )A(V ∗PV ) (A ∈ L (H )).

This easily implies that P = V ∗PV for all projections P on H . This further gives
that V equals the identitymultiplied by a complex number ofmodulus 1. It follows that
Uλ,Uμ are linearly dependent for any λ,μ and hence they induce the same unitary or
antiunitary similarity transformation. The argument is similar but simpler in the case
where α is either 0 or 1. Consequently, we have a unitary or antiunitary operatorU on
H such that

φ(A) = U AU∗ (A ∈ L ++(H )).

This completes the proof of our main result Theorem 3.

3.4 The sketches of the proofs of Propositions 4 and 5

This subsection is devoted to give the sketches of the proofs of our results concerning
bijective maps preserving the χ2

α -divergence on the cone of all positive semidefinite
operators or on the state space.

First, we consider Proposition 4. Let φ be the map given there. We observe that
a positive semidefinite operator B on H is nonsingular if and only if we have
Kα(A||B) < ∞ for every A ∈ L +(H ). Thus we infer that

φ
(
L ++(H )

) = L ++(H ).

Clearly, the restriction φ|L ++(H ) satisfies the conditions of Theorem 3, hence we
have a unitary or an antiunitary operator U : H → H such that

φ(A) = U AU∗ (
A ∈ L ++(H )

)
.

Next, we observe that using the same argument as in the proof of Claim 9, we can
show that for A ∈ L +(H ), {An}∞n=1 ⊂ L ++(H ) with limn→∞ An = A, we have
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that {φ(An)}n∈N is convergent. Let L = limn→∞ φ(An). To see that L = φ(A), for
any B ∈ L ++(H ) we compute

Kα(L||φ(B)) = lim
n→∞ Kα(φ(An)||φ(B))

= lim
n→∞ Kα(An||B) = Kα(A||B) = Kα(φ(A)||φ(B))

which, byLemma8, implies thatφ(A) = L . (Note that this does not give the continuity
of φ on L +(H ).) Hence we obtain

φ(A) = lim
n→∞ φ(An) = lim

n→∞U AnU
∗ = U AU∗

for any A ∈ L +(H ) with some given unitary or antiunitary operator U onH . This
proves the statement in Proposition 4.

As for Proposition 5, let φ be the map given there. As above, we can easily deduce
that

φ(S ++(H )) = S ++(H )

and that φ satisfies (7). Therefore, by the results of Sect. 3.2, we have a unitary or an
antiunitary transformation U : H → H with

φ(A) = U AU∗ (
A ∈ S ++(H )

)
.

The proof can now be completed in a way very similar to the last part of the proof of
Proposition 4.

4 Conclusion, open problems

Above we have proven that any bijective map on any of the convex sets L ++(H ),

L +(H ),S (H ) which preserve the χ2
α -divergence is a unitary or an antiunitary

similarity transformation. This gives the somewhat surprising conclusion that although
the quantity Kα(.||.) is highly nonlinear in its variables, the bijective maps which
preserve it are linear, more accurately, affine automorphisms of the underlying convex
sets.

We finish the paper with two very natural and exciting questions to which we do not
have answers and hencewe leave them as open problems. First, we ask if the bijectivity
assumptions in our results above can be relaxed. Second, what is the structure of those
bijective maps on the setsL ++(H ),L +(H ),S (H )which preserve a general χ2-
divergence given in (10) on page 122201-3 in [15]. The arguments we have presented
in this paper may convince the reader that those questions are most probably difficult
and hence rather challenging andmay therefore be the targets of further investigations.
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