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Abstract. Let M be a von Neumann algebra and p ∈ [1,∞]. Consider the non-commutative Lp-space
Lp(M) associated to M with canonical positive cone Lp

+(M). By employing essentially normed space
techniques, we extend our earlier result and show that for any ϵ ∈ (0, 1], the positive spherical shell

Lp
+(M)11−ϵ := {T ∈ Lp

+(M) : 1− ϵ ≤ ∥T∥ ≤ 1},
as a metric space, is a complete Jordan ∗-invariant for the von Neumann algebra M . In the particular
case of p = ∞, we actually show that for any unital C∗-algebra A, the positive spherical shell {a ∈
A+ : 1− ϵ ≤ ∥a∥ ≤ 1} is a complete Jordan ∗-invariant for A.

Assume M is approximately semifinitie, which includes the case M is either a semifinite algebra,
a hyper-finite algebra or a type III0-factor with a separable predual. When p ∈ (1,∞) and M � C
is approximately semifinite, a stronger conclusion follows: if Φ : Lp

+(M)11−ϵ → Lp
+(N)11−ϵ is a metric

preserving bijection, then there exists a Jordan ∗-isomorphism Θ : N → M such that

Φ(S
1
p ) = Θ∗(S)

1
p for all S ∈ L1

+(M)1(1−ϵ)p .

1. Introduction

In the literature, several partial structures of von Neumann algebras were shown to be complete
Jordan ∗-invariants (see e.g. [4, Théorème 3.3], [6], [15, Theorem 2 and Corollary 5], [16, Theorem
4.5] and [30, Theorem 3]). Generalizing results in [26, 34, 35], D. Sherman showed in [27] that the
metric space structure of the non-commutative Lp-space Lp(M) is a complete Jordan ∗-invariant for the
underlying von Neumann algebra M when p ∈ [1,∞] \ {2}. Let us recall it clearly as follows.

Theorem 1.1 (Sherman [27]). Let p ∈ (1,∞) \ {2}, let M and N be two von Neumann algebras. If
T : Lp(M) → Lp(N) is a bijective linear isometry, then there exists a Jordan ∗-isomorphism J : M → N

and a unitary w ∈ N such that T (φ
1
p ) = w(φ ◦ J−1)

1
p for all φ ∈ (M∗)+.

The cases when p = 1 and p = ∞ are covered by the classical results of Kadison [14, 15], since
L1(M) ∼= M∗ (where M∗ is the predual of M) and L∞(M) ∼= M . For a counter example for the
exceptional case of p = 2, observe that the non-commutative L2-space associated to the von Neumann
algebra B(ℓ2) of bounded linear operators on the separable infinite dimensional Hilbert space ℓ2 and
the one associated to the commutative von Neumann algebra ℓ∞ of bounded scalar sequences are both
isometrically isomorphic to ℓ2.

It is natural to ask whether it is possible to obtain a “smaller metric invariant”. For example, motivated
by the so-called Tingley’s problem (see e.g., [5, 13, 33] and the references therein), the authors of [8]
(respectively, [7]) showed that the unit sphere of L∞(B(H)) ∼= B(H) (respectively, L1(B(H)) ∼= B(H)∗)
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is a complete Jordan ∗-invariant for B(H). Moreover, it was shown in [31] that the unit sphere of
L∞(M) ∼= M is a complete Jordan ∗-invariant for a finite von Neumann algebra M .

Along this line, we show in [20] that, for each p ∈ [1,∞], the contractive part Lp
+(M)10 of the positive

cone Lp
+(M) of the non-commutative Lp-space is a complete Jordan ∗-invariant for the underlying von

Neumann algebra M ; namely, two von Neumann algebras M and N are Jordan ∗-isomorphic whenever
there is a metric preserving bijection between Lp

+(M)10 and Lp
+(N)10. Note that one can include the

case of p = 2 in this situation, since the positive cone of the non-commutative L2-space encodes some
information that cannot be recovered from merely the normed space structure.

Based on our earlier work [21], the first main result of the article is a further development along this
direction. It shows that the positive spherical shell Lp

+(M)11−ϵ is a complete Jordan ∗-invariant for the
underlying von Neumann algebra for any ϵ ∈ (0, 1].

When E is a subset of a normed space X and α, β ∈ R+ with α ≤ β, let us put

Eβ
α := {x ∈ E : α ≤ ∥x∥ ≤ β}.

The precise statement of this first main result is the following.

Theorem 1.2. Let p ∈ [1,∞], ϵ ∈ (0, 1], and M and N be two von Neumann algebras. If there is a
metric preserving bijection Φ : Lp

+(M)11−ϵ → Lp
+(N)11−ϵ, then M and N are Jordan ∗-isomorphic.

For p = 1, we have L1(M) ∼= M∗ and L1(N) ∼= N∗. Let SM and SN be the sets of normal states of M
and N with proper support projections, respectively. We show that Φ restricts to a bijection from SM
onto SN , which preserves orthogonality. We then use a result of Dye in [6] to obtain the conclusion. In
the case of p = ∞, we have L∞(M) ∼= M and L∞(N) ∼= N , and the above theorem says (M+)

1
1−ϵ is a

complete Jordan ∗-invariant for the von Neumann algebra M . This assertion actually holds for unital
C∗-algebras M and N , and it is proved via a generalization of the Mazur-Ulam theorem by Mankiewicz
([22]; see Proposition 4.3). For p ∈ (1,∞), we use a strict convexity argument to verify that Φ is
“partially affine” and can be extended to a metric preserving bijection between the whole cones Lp

+(M)
and Lp

+(N). Then we use results from [25] and [19] to finish the proof.

In line with Theorem 1.1, it is natural to ask whether the map Φ in Theorem 1.2 actually comes
from a Jordan ∗-isomorphism. Although in the case of p = ∞, the precise answer to the above question
is negative (see [20, Example 3.3]), we know from the argument of Theorem 4.4 that Φ extends to
an isometric bijection, and hence is a Jordan ∗-isomorphism after translation and multiplication by a
central symmetry. On the other hand, there is an evidence that the answer for the case of p = 1 could
be positive. In fact, it was proved in [18] (see also [17]) that when p = 1 and M is of type I, then any
isometric bijection from L1

+(M)11 onto L1
+(N)11 is defined by a Jordan ∗-isomorphism. Note that the

arguments in [18] employ a lot of matrix function techniques and are very different from those in this
article.

In order to tackle the above question for the case when 1 < p < ∞, we will first show that the
extension of Φ to the positive cones further extends to an isometric order isomorphism from Lp

sa(M)
onto Lp

sa(N) (see Proposition 3.5). Note that a difficulty of this extension is that Lp
+(M) may not contain

any interior point of Lp
sa(M); otherwise, one could use a result of Mankiewicz (Proposition 4.3) to obtain

this extension easily. On the other hand, to our best knowledge, it is not known if such a bijective
isometry between the self-adjoint parts of non-commutative Lp-spaces has an isometric complexification
(although it has to be the case if the strong version holds), and we cannot use Theorem 1.1 to obtain
what we wanted.
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Therefore, we will employ the concept of EP1 as introduced by K. Watanabe [34] and D. Sherman [28],
together with a result of Sourour [29] and Grein [10] concerning surjective isometries of vector-valued Lp-
spaces (in the ordinary sense), to obtain the following second main theorem of the article. Note that a von
Neumann algebra M with a nonzero type I2 summand does not satisfy EP1 (see Example 5.10), whilst
approximately semifinite von Neumann algebras (see Definition A.5) without type I2 summand satisfies
EP1 (see Proposition A.7). The class of approximately semifinite von Neumann algebras includes, in
particular, all semifinite algebras, all hyperfinite algebras, and all type III0-factors with separable preduals
(see Remark 5.8(b)).

Theorem 1.3. Let p ∈ (1,∞) and ϵ ∈ (0, 1]. Suppose that M and N are von Neumann algebras such
that M � C and M is approximately semifinite. If Φ : Lp

+(M)11−ϵ → Lp
+(N)11−ϵ is a metric preserving

surjection, there is a unique Jordan ∗-isomorphism Θ : N → M satisfying Φ(R
1
p ) = Θ∗(R)

1
p , for any

R ∈ L1
+(M)1(1−ϵ)p .

Observe that in the case when M = N = C, we have Lp
+(M)11−ϵ = Lp

+(N)11−ϵ = [1− ϵ, 1], and the
induced metric is the Euclidean one: d(x, y) = |x− y|. The metric preserving bijection from [1− ϵ, 1] to
itself that sends x to 2 − ϵ − x cannot be extended to a linear map on Lp

sa(M). Therefore, we have an
exception in this trivial case of M ∼= C.

It happens that all approximately semifinite algebras without a type I2 summand satisfies EP1.
Therefore, we will consider the case when M is of type I2 and the case when M satisfies EP1, separately
(and then combine the two cases together). For the benefit of the reader, some facts concerning the
relation between EP1 and approximately semifinite algebras will be recalled in the Appendix.

Theorems 1.2 and 1.3 concern with “closed” positive spherical shells. Of course, one can also consider
the “open” positive spherical shells:{

S ∈ Lp
+(M) : 1− ϵ < ∥S∥ < 1

}
.

Unlike the case of p = ∞ (in this case, L∞(M)+ = M+), the “open” positive spherical shells do not
contain any open subset of Lp

sa(M) when 1 ≤ p < ∞ (since Lp
+(M) may not contain any open subset

of Lp
sa(M); for example, ℓ2+ = L2

+(ℓ
∞) does not contain any interior point of ℓ2sa). Thus, one cannot

use the Mazur-Ulam-Mankiewicz theorem (see Proposition 4.3) to obtain a linear extension of a metric
preserving bijection between “open” positive spherical shells. Nevertheless, the corresponding statements
of both Theorems 1.2 and 1.3 for “open” positive spherical shells are also obtained.

Corollary 1.4. Let p ∈ [1,∞] and ϵ ∈ (0, 1]. Suppose that there exists a metric preserving bijection
Φ :

{
S ∈ Lp

+(M) : 1− ϵ < ∥S∥ < 1
}
→

{
T ∈ Lp

+(N) : 1− ϵ < ∥T∥ < 1
}
.

Then M and N are Jordan ∗-isomorphic. In the case when p = ∞, the map Φ can be extended to
a Jordan *-isomorphism from M onto N after translation and multiplication by a central symmetry.
Furthermore, if p ∈ (1,∞), M � C and M is approximately semi-finite, then there is a Jordan ∗-
isomorphism Θ : N → M such that Φ(S

1
p ) = Θ∗(S)

1
p .

Proof. Note that Φ can be extended to a metric preserving bijection between the metric completions
of its domain and range, which coincide with the closed sets Lp

+(M)11−ϵ and Lp
+(N)11−ϵ of the Banach

spaces Lp(M) and Lp(N), respectively. Thus the assertions follow from Theorems 1.2, 1.3 and 4.4. �

With a simple rescaling argument, we can also derive Theorems 1.2, 1.3 and 4.4 as well as Corollary
1.4 to hold when 1 and 1 − ϵ are replaced, respectively, by nonnegative numbers β and α satisfying
α < β. In other words, the existence of a metric preserving bijection Φ : Lp

+(M)βα → Lp
+(N)βα guarantees

similar conclusions in these results.
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To end the introduction, we recall the link of our results to the Tingley’s problem, which asks if every
metric preserving bijection between the unit spheres of two Banach spaces extends to a linear isometry
between the whole spaces (see, e.g., [5, 7, 8, 13, 33]). Since a linear map between non-commutative
Lp-spaces is determined completely by its restriction to the positive sphere of the domain, one might
expect that the “minimum” complete Jordan ∗-invariant for a von Neumann algebra M is Lp

+(M)11. In
this respect, we make the following conjecture.

Conjecture 1.5. Let M,N be von Neumann algebras, and let p ∈ [1,∞). If Ψ : Lp
+(M)11 → Lp

+(N)11 is
a metric preserving bijection, then there is a Jordan ∗-isomorphism Θ : N → M satisfying Ψ(R

1
p ) =

Θ∗(R)
1
p , for any R ∈ L1

+(M)11.

For p = 1, Conjecture 1.5 holds when M is commutative (see e.g., [17]), or more general, when M is of
type I (see [18]). The case of p > 1 is basically unknown. Notice that one cannot use the solution for the
Tingley’s problem for Banach spaces and operator algebras (even if the full generality were obtained) to
give a positive answer to the above conjecture (nor to prove Theorem 1.3). On the other hand, Theorems
1.2 and 1.3 suggest that Conjecture 1.5 has a positive answer. Furthermore, the methods provided in
[12, 11] might be helpful, and we will explore into this and other possibilities in a future project.

2. Notation and preliminary

We fix some notations and recall some facts of non-commutative Lp-spaces. The material here are
mainly taken from [25] and [32]. Let M be a von Neumann algebra with predual M∗, let P(M) be the
set of projections in M and let Z(M) be the center of M . We fix a normal semifinite faithful weight
φ on M , and consider the modular automorphism group α corresponding to φ. There exists a normal
faithful semifinite trace τ on the von Neumann algebra crossed product M̌ := MōαR satisfying some
compatibility condition with φ. Denote by L0(M̌, τ) the completion of M̌ under the vector topology
defined by a neighborhood basis at 0 of the form

U(ϵ, δ) := {x ∈ M̌ : ∥xp∥ ≤ ϵ and τ(1− p) ≤ δ, for a projection p ∈ M̌}.

Then the ∗-algebra structure of M̌ extends to a ∗-algebra structure of L0(M̌, τ).

If M is faithfully represented on a Hilbert space H, then elements in L0(M̌, τ) can be regarded
as closed operators on L2(R;H), the Hilbert space of square integrable H-valued functions on R. More
precisely, let T be a densely defined closed operator on L2(R;H) affiliated with M̌ , and |T | be its absolute
value with spectral measure E|T |. Then T corresponds uniquely to an element in L0(M̌, τ) if and only
if τ

(
1 − E|T |([0, λ])

)
< ∞ when λ is large. Conversely, every element in L0(M̌, τ) arises from a closed

operator in this way. Under this identification, the ∗-operation on L0(M̌, τ) coincides with the adjoint.
The addition and the multiplication on L0(M̌, τ) are the closures of the corresponding operations for
closed operators. Denote by L0

+(M̌, τ) the set of all positive self-adjoint operators in L0(M̌, τ).

The dual action α̂ : R → Aut(M̌) extends to an action on L0(M̌, τ). For any p ∈ [1,∞], we set

Lp(M) :=
{
T ∈ L0(M̌, τ) : α̂s(T ) = e−s/pT, for all s ∈ R

}
(where, by convention, e−s/∞ = 1). Then L∞(M) coincides with the subalgebra M of M̌ ⊆ L0(M̌, τ).
Moreover, if T ∈ L0(M̌, τ) and T = u|T | is the polar decomposition, then T ∈ Lp(M) if and only if
|T | ∈ Lp(M). The product of an element in L∞(M) with an element in Lp(M) (in whatever order)
is again in Lp(M). Hence, Lp(M) is canonically an M -bimodule. Let Lp

sa(M) denote the set of all
self-adjoint operators in Lp(M) and put Lp

+(M) := Lp(M) ∩ L0
+(M̌, τ).
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When q ∈ (0,∞), the Mazur map

S 7→ S
1
q

(
S ∈ L0

+(M̌, τ)
)

restricts to a bijection from L1
+(M) onto Lq

+(M). Since we will use this connection between L1
+(M) and

Lq
+(M) frequently,

elements in Lq
+(M) may sometimes be written in the form S

1
q (for a unique element

S ∈ L1
+(M)).

Throughout this article, we identify
(
L1(M), L1

+(M)
)

with (M∗, (M∗)+) as ordered vector spaces.
Hence,

(
L1(M), L1

+(M)
)

becomes an ordered Banach space with the norm ∥ · ∥1 induced from M∗.
When p ∈ (1,∞), the function:

∥T∥p :=
∥∥|T |p∥∥ 1

p

1

is a norm on Lp(M), and
(
Lp(M), Lp

+(M)
)

becomes an ordered Banach space. It is well-known that this
ordered Banach space is independent of the choices of φ and τ (up to isometric order isomorphisms).

For any p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, if S ∈ Lp(M) and T ∈ Lq(M), then ST ∈ L1(M).
The function T 7→ Tr(T ) := T (1) on L1(M) = M∗ is called the “Haagerup trace”, and the assignment
S 7→ Tr(S·) defines a bijection from Lp(M) to (Lq(M))∗ that sends Lp

sa(M) and Lp
+(M) onto the set of

hermitian functionals and the set of positive functionals on Lq(M), respectively.

For R ∈ Lp
sa(M), we denote by sR and by zR the support and the central support of R, respectively;

namely, sR is the smallest element in P(M) satisfying sRR = R and zR is the smallest element in
P(M) ∩ Z(M) satisfying zRR = R. It is easy to see that if T ∈ L1

+(M), then s
T

1
p
= sT and z

T
1
p
= zT .

The following lemma is a reformulation of [25, Proposition A.2] together with some well-known facts
(see e.g. [25, Fact 1.3]).

Lemma 2.1. Let p ∈ (1,∞).

(a) Suppose that R1, R2 ∈ Lp
sa(M). If sR1

sR2
= 0, then ∥R1 + R2∥pp = ∥R1∥pp + ∥R2∥pp. Conversely, if

p ̸= 2 and ∥R1 +R2∥pp = ∥R1 −R2∥pp = ∥R1∥pp + ∥R2∥pp, then sR1
sR2

= 0.

(b) For T1, T2 ∈ L1
+(M), the following statements are equivalent.

(1) sT1 · sT2 = 0.
(2) T

1
p

1 T
1
p

2 = 0.
(3) ∥T

1
p

1 + T
1
p

2 ∥pp = ∥T
1
p

1 ∥pp + ∥T
1
p

2 ∥pp.
(4) ∥T1 − T2∥1 = ∥T1∥1 + ∥T2∥1.

(c) S 7→ S
1
p is a homeomorphism from L1

+(M) onto Lp
+(M).

The next lemma should also be well-known, but since we cannot find a precise reference for it in the
literature, we give its justification here.

Lemma 2.2. Let q ∈ (0,∞). If R, T ∈ L1(M)+ with sRsT = 0, then (R+ T )q = Rq + T q.

Proof. Let KR := sR(L
2(R;H)) and KT := sT (L

2(R;H)). Let K0 be the orthogonal complement of
KR + KT . As R = sRRsR, the restriction, R1, of R on KR is a densely defined positive self-adjoint
operator. The same is true for the restriction, T1, of T on KT . One may then identify R, T and R + T
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with R1 ⊕ 0KT
⊕ 0K0 , 0KR

⊕ T1 ⊕ 0K0 and R1 ⊕ T1 ⊕ 0K0 , respectively. Thus, Rq + T q can be identified
with the closed operator Rq

1 ⊕ T q
1 ⊕ 0K0 , which clearly coincides with (R+ T )q. �

3. A preparation: extension to an order preserving linear isometry

We will show in this section that when p ∈ (1,∞), the metric preserving bijection Φ extends to a
linear isometric order isomorphism from Lp

sa(M) onto Lp
sa(N).

The first ingredient that we needed is the following lemma concerning automatic affineness, that
generalises a result of Baker in [1]. However, we do not find our generalization explicitly stated or
used in any literature. Observe that our proof is completely different from the arguments in [1], which
seemingly does not apply to our case.

Lemma 3.1. Let X and Y be real Banach spaces with Y being strictly convex. Suppose that E is a (not
necessarily convex) nonempty subset of X and f : E → Y is a metric preserving map. For any x, y ∈ E,
one has

f(sx+ (1− s)y) = sf(x) + (1− s)f(y) whenever s ∈ (0, 1) satisfying sx+ (1− s)y ∈ E. (3.1)

Proof. It suffices to consider the case when y ̸= x. Observe that∥∥(f(x)− f(y)
)
−
(
f(sx+ (1− s)y)− f(y)

)∥∥ = ∥x− (sx+ (1− s)y)∥ = (1− s) · ∥x− y∥ (3.2)
= ∥f(x)− f(y)∥ − ∥f(sx+ (1− s)y)− f(y)∥

Hence, the strict convexity of Y produces δ ∈ R+ such that(
f(x)− f(y)

)
−
(
f(sx+ (1− s)y)− f(y)

)
= δ

(
f(sx+ (1− s)y)− f(y)

)
.

It follows again from (3.2) that
(1− s) · ∥x− y∥ =

∥∥(f(x)− f(y)
)
−

(
f(sx+ (1− s)y)− f(y)

)∥∥ = δs · ∥x− y∥,

and so δ = (1− s)/s. Hence, f(sx+ (1− s)y) = sf(x) + (1− s)f(y) as required. �

Our second result is easy. In fact, if we set f̄(z) := mf(z/m) when z ∈ Km
0 for some m ∈ N, then f̄

is well-defined and will satisfy the requirement in the statement.

Lemma 3.2. Let X and Y be two Banach spaces, and let K ⊆ X and L ⊆ Y be (not necessarily proper
nor closed) cones. If f : K1

0 → L1
0 is an affine map (not necessarily surjective) with f(0) = 0, then f

extends uniquely to an affine map f̄ from K to L. If, in addition, f preserves metric, then so is f̄ .

Proposition 3.3. Let X and Y be strictly convex Banach spaces. Suppose that K ⊆ X and L ⊆ Y are
(not necessarily proper nor closed) cones such that the subspace generated by K and the one by L both
have dimensions (as real vector spaces) greater than one. Let ϵ ∈ (0, 1]. If f : K1

1−ϵ → L1
1−ϵ is a metric

preserving surjection, then f can be extended to a metric preserving affine surjection from K onto L
sending 0 to 0.

Proof. For simplicity we set υ := 1 − ϵ. With Lemma 3.1, we only verify that f extends to a metric
preserving map sending 0 to 0. Let us first show that

f(K1
1 ) = L1

1 and f(Kυ
υ ) = Lυ

υ. (3.3)
Consider an arbitrary element x ∈ K1

1 . If ∥f(x)∥ ∈ (υ, 1), then f(x) is the mid-point of two distinct
elements in K1

υ, and by Lemma 3.1 (applied to f−1), the element x ∈ K1
1 is also the mid-point of two
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distinct elements in K1
υ, which is impossible (as X is strictly convex). Consequently, f(K1

1 ) ⊆ Lυ
υ ∪ L1

1.
Moreover, since K1

1 is path-connected and f is continuous, one sees that
either f(K1

1 ) ⊆ Lυ
υ or f(K1

1 ) ⊆ L1
1.

If υ = 0, then Lυ
υ contains only one point, and hence f(K1

1 ) * Lυ
υ (because the subspace generated by

K1
1 has dimension strictly bigger than one). Suppose that υ > 0, and consider two distinct elements

x, y ∈ K1
1 which are so close to each other that the line segment joining x and y lies inside K1

υ. Then
Lemma 3.1 tells us that the line segment joining f(x) and f(y) lies inside L1

υ, which forbids both f(x)
and f(y) belonging to Lυ

υ (because of the strict convexity of Y ). This means that f(K1
1 ) ⊆ L1

1. By
considering f−1, we obtain the asserted equality f(K1

1 ) = L1
1.

In order to establish f(Kυ
υ ) = Lυ

υ, it suffices to show that f(Kυ
υ ) ⊆ Lυ

υ (again, because f−1 preserves
metric). Suppose on the contrary that there exists x ∈ Kυ

υ with ∥f(x)∥ ∈ (υ, 1) (observe that ∥f(x)∥ ̸= 1
since f(K1

1 ) = L1
1). Then∥∥∥∥ f(x)

∥f(x)∥
− f(x)

∥∥∥∥ =

(
1

∥f(x)∥
− 1

)
∥f(x)∥ = 1− ∥f(x)∥ < 1− υ.

However, for any y ∈ K1
1 , one has ∥y−x∥ ≥ 1−υ, and this contradicts f(K1

1 ) = L1
1 (because f(x)

∥f(x)∥ ∈ L1
1).

Consequently, Relation (3.3) is verified.

Next, we define f̄ : K → L by setting f̄(0) = 0 as well as
f̄(x) := ∥x∥f(x/∥x∥

)
(x ∈ K \ {0}). (3.4)

We claim that f̄ is a metric preserving map extending f . Indeed, if υ = 0, then f(0) = 0 (because
K0

0 = {0} and L0
0 = {0}), and by Lemma 3.1, we know that f is an affine map on K1

0 , and the assertion
on f̄ follows from Lemma 3.2.

Suppose that υ > 0. Pick an arbitrary element x ∈ K1
1 . It follows from Relation (3.3) that

∥f(x)∥ = 1 = (1− υ) + υ = ∥x− υx∥+ ∥f(υx)∥ = ∥f(x)− f(υx)∥+ ∥f(υx)∥,

and this, together with the strict convexity of Y , gives f(x) − f(υx) = δf(υx) for some δ ∈ R+.
Consequently, Relation (3.3) tells us that δ = (1 − υ)/υ, which means that f(υx) = υf(x). Hence,
Lemma 3.1 ensures that

f(γx) = γf(x) (γ ∈ [υ, 1];x ∈ K1
1 ). (3.5)

Thus, f̄ extends f .

For each k ∈ Z, we set

Kk := Kυ−k

υ−k+1 , Lk := Lυ−k

υ−k+1 and fk := f̄ |Kk
.

It follows from (3.4) and (3.5) that

fk(x) = f(υkx)/υk (x ∈ Kk).

Thus, the metric preserving property of f implies that fk preserves metric.

Fix arbitrary distinct elements x, y ∈ K \ {0} with ∥x∥ ≤ ∥y∥. Notice that the assignment
ν : s 7→ ∥sx+ (1− s)y∥

is a continuous map from [0, 1] to R+. There exist k1 ≤ k2 in Z such that

υ−k1+1 < ∥x∥ ≤ υ−k1 and υ−k2+1 ≤ ∥y∥ < υ−k2 .

If k1 = k2, then x, y ∈ Kk1 and we have ∥f̄(x)− f̄(y)∥ = ∥x− y∥. Assume that k1 < k2. One can find
s1, . . . , sk2−k1

∈ (0, 1) such that s1 < s2 < · · · < sk2−k1
and that ν(si) = υ−k1−i+1. Denote

z0 := x, zk2−k1+1 := y and zi := six+ (1− si)y (i = 1, . . . , k2 − k1).
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It follows that zi, zi+1 ∈ Kk1+i (i = 0, 1, . . . , k2 − k1), and we have
∥f̄(zi)− f̄(zi+1)∥ = ∥fk1+i(zi)− fk1+i(zi+1)∥ = ∥zi − zi+1∥.

Moreover, since
∥(sx+ (1− s)y)− (s′x+ (1− s′)y)∥ = (s′ − s)∥x− y∥ whenever s ≤ s′,

we see that
∥z0 − z1∥+ · · ·+ ∥zk2−k1 − zk2−k1+1∥ = ∥x− y∥.

Thus,
∥f̄(x)− f̄(y)∥ ≤ ∥f̄(z0)− f̄(z1)∥+ · · ·+ ∥f̄(zk2−k1)− f̄(zk2−k1+1)∥ = ∥x− y∥.

Furthermore, it follows from the definition of f̄ that ∥f̄(sx)∥ = ∥sx∥. From these, we conclude that f̄ is
contractive. By considering f̄−1, we conclude that f̄ is a metric preserving bijection extending f . �

The above shows that Φ can be extended to a metric preserving bijection from Lp
+(M) onto Lp

+(N).
In order to further extend this map to Lp

sa(M), let us recall the following well-known information about
projections. Denote by

Pσ(M) := {sT : T ∈ L1
+(M) = (M∗)+}.

Elements in Pσ(M) are called σ-finite. By Zorn’s lemma, for any projection e ∈ P(M), one has
e = sup {f ∈ Pσ(M) : f ≤ e}, (3.6)

and e can be written as an orthogonal sum of σ-finite projections.

Definition 3.4 (Dye [6]). A bijection Υ : P(M) → P(N) is called an orthoisomorphism if for every p
and q in P(M), one has

pq = 0 is equivalent to Υ(p)Υ(q) = 0. (3.7)

Proposition 3.5. Let p ∈ (1,∞), and let M and N be von Neumann algebras of dimensions at least
2. Suppose that ϵ ∈ (0, 1], and Φ : Lp

+(M)11−ϵ → Lp
+(N)11−ϵ is a metric preserving surjection. Then

Φ extends to an isometric order isomorphism from Lp
sa(M) onto Lp

sa(N). Moreover, there exists an
orthoisomorphism Υ : P(M) → P(N) such that Υ(sT ) = sΦ(T ) for all T ∈ Lp

+(M)11−ϵ.

Proof. For any T ∈ Lp(M)sa, we know that |T | ∈ Lp(M)+. Denote by T+ and T−, respectively, the
positive part and the negative part of the self-adjoint operator T . It is well-known that T± = |T |±T

2 as
elements in L0(M̌, τ). Moreover, one has T± ∈ Lp(M)+ with sT+sT− = 0,

∥T∥pp = ∥T+∥pp + ∥T−∥pp and ∥T+ + T−∥pp = ∥T+∥pp + ∥T−∥pp.

Conversely, if T ∈ Lp(M)sa and R,S ∈ Lp(M)+ satisfying sRsS = 0 and T = R − S, then we have
R+ S = |T | (as (R+ S)2 = (R− S)2 = T 2 and one can apply [3, Theorem 12]), as well as

R = T+ and S = T−. (3.8)
It is well-known that Lp

sa(M) is strictly convex (see e.g., Section 5 of [24]). By Proposition 3.3, the map
Φ extends to a metric preserving affine surjection, again denoted by Φ, from Lp

+(M) to Lp
+(N) with

Φ(0) = 0.

As Φ is affine, one has
∥Φ(R) + Φ(S)∥p = ∥Φ(R+ S)∥p = ∥R+ S∥p (R,S ∈ Lp

+(M)). (3.9)

Let us define Φ̃ : Lp
sa(M) → Lp

sa(N) by

Φ̃(T ) := Φ(T+)− Φ(T−) (T ∈ Lp
sa(M)).
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Clear, Φ̃ is a linear extension of Φ. On the other hand, Relation (3.9) implies
∥Φ(T+) + Φ(T−)∥pp = ∥T+ + T−∥pp = ∥T+∥pp + ∥T−∥pp = ∥Φ(T+)∥pp + ∥Φ(T−)∥pp.

By Lemma 2.1(b), we have sΦ(T+)sΦ(T−) = 0. Thus, the uniqueness of Φ̃(T )± (see (3.8)) ensures that
Φ̃(T )± = Φ(T±) for any T ∈ Lp

sa(M). Moreover, Φ̃ is surjective because Φ is surjective. Furthermore,
for any R,S ∈ Lp

sa(M), one has
∥Φ̃(R)− Φ̃(S)∥ = ∥Φ(R+)− Φ(R−)− Φ(S+) + Φ(S−)∥ = ∥Φ(R+ + S−)− Φ(R− + S+)∥

= ∥(R+ + S−)− (R− + S+)∥ = ∥R− S∥.

Finally, using Lemma 2.1(b) and Relation (3.9), one sees that Υσ : sT 7→ sΦ(T ) is a well-defined
bijection from Pσ(M) onto Pσ(N) such that Relation (3.7) holds. By Relation (3.6), the map Υσ

extends to a bijection Υ from P(M) onto P(N) that satisfies Relation (3.7). �

As said in the Introduction, it is not at all obvious that the complexification of an isometry from
Lp
sa(M) onto Lp

sa(N) is an isometry from Lp(M) onto Lp(N). If it is true, then with Proposition 3.5
we can apply directly the main result of [27] to the obtain Theorem 1.3 for the case when p ̸= 2 (even
without assuming M to be approximately semifinite).

4. The first main result

Let us now consider Theorem 1.2 for the case of p = 1. In order to obtain a proof for this case, we
need the following proposition from [19, Proposition 2.2], which is a variant of the main result in [6].

Proposition 4.1. (Dye) Suppose that there is an orthoisomorphism ∆ from P(M) onto P(N). Then
M and N are Jordan ∗-isomorphic.

The following result establishes the case of p = 1 in Theorem 1.2. Notice that the situation when
ϵ = 0 was already verified in [19, Corollary 3.11].

Theorem 4.2. Let ϵ ∈ (0, 1]. If there is a metric preserving bijection Φ : L1
+(M)11−ϵ → L1

+(N)11−ϵ, then
M and N are Jordan ∗-isomorphic.

Proof. If M is one dimensional, then L1
+(M)11−ϵ is an interval when ϵ > 0 and is a singleton set when

ϵ = 0. This implies that L1
+(N)11−ϵ is homeomorphic to an interval or a singleton set respectively. Thus

N is also one dimensional, and hence isomorphic to M . We assume that both M and N are of dimension
greater than one in the following.

Set SM := {R ∈ L1
+(M)11 : sR ̸= 1}. For any R ∈ L1

+(M)11−ϵ, it is easy to see, via Lemma 2.1(b), that
R ∈ SM if and only if there exists T ∈ L1

+(M)11−ϵ such that ∥R − T∥1 = 2. In this case, T ∈ SM and
sR · sT = 0. Hence, by considering Φ and Φ−1, one has Φ(SM ) = SN .

Let us formally define a map
∆0 : Pσ(M) \ {1} → Pσ(N) \ {1}

by ∆0(e) := sΦ(R), where R ∈ SM satisfying sR = e. To show that ∆0 is well-defined, let us consider
another element R′ ∈ SM with sR′ = e. Pick any projection f ∈ Pσ(N) with sΦ(R) · f = 0. Suppose that
T ∈ SM satisfying sΦ(T ) = f . Lemma 2.1(b) implies

∥R− T∥1 = ∥Φ(R)− Φ(T )∥1 = 2,

and e · sT = 0. Hence we have ∥Φ(R′)− Φ(T )∥1 = ∥R′ − T∥1 = 2, which gives sΦ(R′) · f = 0. From this
and (3.6), we conclude that sΦ(R′) = sΦ(R), and ∆0 is well-defined. Suppose that e1, e2 ∈ Pσ(M) \ {1}
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such that e1 · e2 = 0. If R1, R2 ∈ SM satisfying sRi = ei for i = 1, 2, then ∥Φ(R1)−Φ(R2)∥1 = 2, which
gives ∆0(e1) ·∆0(e2) = 0. By considering Φ−1, we know that if ∆0(e1) ·∆0(e2) = 0, then e1 · e2 = 0

Now, we extend ∆0 to ∆ : P(M) → P(N) by setting ∆(e) to be the supremum in P(N) of the set
{∆0(e

′) : e′ ∈ Pσ(N); e′ ≤ e}. In particular, ∆(1) = 1. Using (3.6), it is not hard to show that ∆
satisfies Relation (3.7) and the conclusion follows from Proposition 4.1. �

Next, we consider the case when p = ∞. For this case, we need the following result of Mankiewicz
from [22, Theorem 2], which can also be found in [2, Theorem 14.1].

Proposition 4.3. (Mazur-Ulam-Mankiewicz) Let U be a non-empty open connected subset of a normed
space X, and let W be an open subset of a normed space Y . Then every isometry from U onto W can
be extended uniquely to an affine isometry from X onto Y .

Under the identification of (L∞(M), L∞(M)+) and (M,M+) as ordered Banach spaces, the following
result gives the case of p = ∞ in Theorem 1.2.

Theorem 4.4. Let A and B be unital C∗-algebras. Assume ϵ ∈ (0, 1]. If there is a metric preserving
bijection Φ : (A+)

1
1−ϵ → (B+)

1
1−ϵ, then A and B are Jordan ∗-isomorphic. Indeed, Φ extends to a Jordan

∗-isomorphism from A onto B after translation and multiplication by a central symmetry.

Proof. For y ∈ B+ and r > 0, we set

DB(y, r) := {z ∈ Bsa : ∥z − y∥ < r}

as well as
V (y, r) := DB(y, r) ∩ (B+)

1
1−ϵ.

Clearly, {V (x, r) : r > 0} is a neighbourhood basis of an element x in (B+)
1
1−ϵ. Moreover, notice that

(B+)
1
0 = {z ∈ Bsa : ∥z − 1/2∥ ≤ 1/2}

(this can be verified by considering the C∗-subalgebra generated by z, when z runs through all elements
in (B+)

1
0). In other words, (B+)

1
0 is the closure of DB(1/2, 1/2). Let us also put

O := DB(1/2, 1/2) \ (B+)
1−ϵ
0 , B1 := {y ∈ Bsa : ∥y − 1/2∥ = 1/2; ∥y∥ > 1− ϵ} and B2 := (B+)

1−ϵ
1−ϵ.

Clearly, O is open in Bsa and (B+)
1
1−ϵ = O ∪B1 ∪B2. It is not hard to see that O is dense in (B+)

1
1−ϵ.

Next, we want to find an element c in (A+)
1
1−ϵ (as a subset of Asa) and a scalar t > 0 such that

DA(c, t) ⊆ (A+)
1
1−ϵ and Φ

(
DA(c, t)

)
is an open subset of Bsa. Let us first consider an arbitrary element

a in the open set U := DA(1/2, 1/2) \ (A+)
1−ϵ
0 of Asa. If Φ(a) ∈ O, then we may take c = a and it is

clear that such a scalar t > 0 can be found. Suppose that Φ(a) /∈ O. The density of O in (B+)
1
1−ϵ tells

us that O ∩ V (Φ(a), s) ̸= ∅ for all s > 0. We choose s > 0 so that DA(a, s) ⊆ U , and pick an arbitrary
element d ∈ O ∩ V (Φ(a), s). Then c := Φ−1(d) ∈ DA(a, s). One may then find small enough t > 0 with
DB(d, t) ⊆ O and DB(c, t) ⊆ U .

Finally, Proposition 4.3 tells us that Φ|DA(c,t) extends to a bijective isometry from Asa onto Bsa, and
a well-known result of Kadison (see [15, Theorem 2]) gives the desired conclusion. �

Observe that
{
b ∈ B+ : 1− ϵ < ∥b∥ < 1

}
is not an open subset of Bsa (actually, this set coincides

with O ∪ B1 \ (B+)
1
1). Thus, the above argument remains almost the same if we assume that Φ is a

metric preserving bijection from
{
b ∈ B+ : 1− ϵ < ∥b∥ < 1

}
onto

{
a ∈ A+ : 1− ϵ < ∥a∥ < 1

}
instead.
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We now turn to the case when p ∈ (1,∞). Since it is very rare that Lp
+(M) contains an open subset

of Lp
sa(M), Proposition 4.3 cannot be employed in this case. Instead, we need Proposition 3.3 and the

following result from [19, Theorem 3.2(a)], which is another variant of Dye’s theorem in [6].

Proposition 4.5. Suppose that there is a bijection Λ : L1
+(M)11 → L1

+(N)11 satisfying: for every
R, T ∈ L1

+(M)11, one has

sR · sT = 0 if and only if sΛ(R) · sΛ(T ) = 0.

Then M and N are Jordan ∗-isomorphic.

Theorem 4.6. Let p ∈ (1,∞) and ϵ ∈ (0, 1]. If there is a metric preserving bijection Φ : Lp
+(M)11−ϵ →

Lp
+(N)11−ϵ, then M and N are Jordan ∗-isomorphic.

Proof. If M ∼= C, then Lp
+(M)11−ϵ is a closed and bounded interval. As Φ is a metric preserving bijection,

the topological space Lp
+(N)11−ϵ is also of Hausdorff dimension one, which implies that N ∼= C. The

corresponding conclusion holds when N ∼= C. Therefore, we will only consider the cases when M � C
and N � C in the following.

Proposition 3.5 ensures that Φ extends to a metric preserving affine bijection Φ̄ from Lp
+(M) onto

Lp
+(N). Let us define a bijection Λ : L1

+(M)11 → L1
+(N)11 by

Λ(S) :=
(
Φ̄(S

1
p )
)p

(S ∈ L1
+(M)11),

where S 7→ S
1
p is the Mazur map.

Pick arbitrary elements R, T ∈ L1
+(M)11 with sR · sT = 0. Lemma 2.1(b) gives

∥∥R 1
p + T

1
p

∥∥p
p
= 2, and

we have ∥∥Λ(R)
1
p + Λ(T )

1
p

∥∥p
p
=

∥∥Φ̄(R 1
p + T

1
p )
∥∥p
p
= 2.

Therefore, Lemma 2.1(b) again produces sΛ(R) · sΛ(T ) = 0. By considering Φ−1, we know that Λ satisfies
the hypothesis of Proposition 4.5, and the required conclusion follows. �

5. The second main result

In order to obtain Theorem 1.3, we need to deal with two cases separately. They are the case of
algebras of type I2 and the case of algebras having EP1.

5.1. The case of type I2 algebras. In the following, M2(C) is the von Neumann algebra of 2 × 2
complex matrices. For p ∈ (1,∞), we denote by S

p
2 the four dimensional real vector space M2(C)sa

equipped with the Schatten p-norm. If (X,µ) is a semifinite measure space and M := L∞(µ,M2(C)),
then Lp

sa(M) = Lp(µ; Sp2) and

Lp
+(M) = Lp

+(µ; S
p
2) := {f ∈ Lp(µ; Sp2) : f(x) ∈ M2(C)+ µ-a.e.}.

In this case, the center Z(M) can be identified with L∞(µ), and the central support zg coincides with
the indicator function 1{x∈X:g(x)̸=0} of the cozero of g, for each g ∈ Lp

+(M).

Lemma 5.1. Let q ∈ (1,∞)\{2}. Then S
q
2 cannot be written as an ℓq-direct sum of two proper subspaces.
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Proof. Suppose X and Y are two proper subspaces of S
q
2 such that S

q
2 = X ⊕ℓq Y. Fixed an arbitrary

R ∈ X \ {0}. For every T ∈ Y, we have ∥R + T∥qq = ∥R∥qq + ∥T∥qq = ∥R − T∥qq. By Lemma 2.1(a), one
has sR · sT = 0. Hence, if sR = 1, then Y = {0}, which is a contradiction. This shows that sR is a rank
one projection, and for each T ∈ Y \ {0}, the projection sT = 1− sR is also of rank one. Consequently,
Y = (1− sR)S

q
2(1− sR), and thus is of real dimension one. In the same way, X is of real dimension one.

However, this contradicts to the fact that S
q
2 has real dimension 4. �

The following lemma should be well-known, but we give a simple argument here for completeness.

Lemma 5.2. Let q ∈ (1,∞) and Λ : Sq2 → S
q
2 be a surjective linear isometry with Λ(M2(C)+) = M2(C)+.

Then Λ is an isometry on M2(C)sa, when it is equipped with the operator norm.

Proof. Let e :=

(
1 0
0 0

)
. Since e and 1 − e are orthogonal projections, one can use Lemma 2.1(b)

and the isometric assumption of Λ to show that sΛ(e)sΛ(1−e) = 0. This tells us that Λ(e) and Λ(1 − e)
are rank one positive matrices, and they can be simultaneously diagonalized. Therefore, one can find a
unitary U ∈ M2(C) such that UΛ(e)U∗ = e (observe that ∥Λ(e)∥p = 1) and U

(
Λ(1)− Λ(e)

)
U∗ = 1− e.

Hence, Λ(1) = 1. Now, [15, Corollary 5] gives the conclusion. �

In order to verify Theorem 1.3 for M = M2(C) when p ̸= 2, we also need the following result (see [10]
and [29]), which can be found in [9, Theorem 8.3.9].

Proposition 5.3. (Sourour-Greim) Suppose that q ∈ [1,∞) \ {2}. Let (X1, µ1) and (X2, µ2) be finite
measure spaces, and let E1 and E2 be two separable real Banach spaces such that neither of them can
be decomposed into an ℓq-direct sum of two non-zero subspaces. Assume Ψ : Lq(µ1, E1) → Lq(µ2, E2)
is a surjective linear isometry. Then there is a set isomorphism Ξ from measurable subsets of X1 onto
measurable subsets of X2 as well as a strongly measurable map V : X2 → B(E1;E2) such that V (y) is a
surjective isometry µ2-a.e. and that for any measurable subset ∆ of X1 and a ∈ E1, one has

Ψ(a1∆)(y) =
(dµ1 ◦ Ξ−1

dµ2

)1/q

(y)V (y)
(
a1Ξ(∆)(y)

)
for µ2-a.e. y. (5.1)

We say that a map Φ : Lp
+(M) → Lp

+(N) preserves central supports if zT = zΦ(T ) for any T ∈ Lp
+(M).

Lemma 5.4. Let (X,µ) be a finite measure space and p ∈ (1,∞)\{2}. If Φ : Lp(µ; Sp2) → Lp(µ; Sp2) is a
surjective linear isometry preserving central supports and satisfying Φ(Lp

+(µ; S
p
2)) = Lp

+(µ; S
p
2), then there

is a Jordan ∗-isomorphism Θ : L∞(µ;M2(C)) → L∞(µ;M2(C)) with Φ(f
1
p ) = Θ∗(f)

1
p (f ∈ L1

+(µ; S
p
2)).

Proof. Notice that since S
p
2 is finite dimensional, the dual Banach space of Lp(µ; Sp2) is Lq(µ; Sq2) (where

1/p + 1/q = 1) and the canonical bijective isometry between them will send the set of positive linear
functionals on Lp(µ; Sp2) onto Lq

+(µ; S
q
2). Therefore, the dual map Ψ of Φ is an order isomorphic isometry

from Lq(µ; Sq2) to itself. It is easy to see that Ψ also preserves central supports.

By Lemma 5.1, we see that the hypothesis of Proposition 5.3 is satisfied. Since Ψ preserves central
supports, we know from Relation (5.1) that the map Ξ in Proposition 5.3 will satisfy

µ
(
(∆ \ Ξ(∆)) ∪ (Ξ(∆) \∆)

)
= 0 for every measurable set ∆.

Thus, we may assume that Ξ is the identity map and obtain
Ψ(g)(x) = V (x)(g(x)) for µ-almost every x ∈ X and all g ∈ Lq(µ; Sq2)),

where V is the strongly measurable map in Proposition 5.3.
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For any positive matrix a ∈ M2(C)+ with rational entries, by considering the constant function
ga ∈ Lq(µ; Sq2) taking the value a, the positivity of Ψ tells us that V (x)(a) ≥ 0 for µ-a.e. x. As the
set of positive matrices in M2(C) with rational entries is countable and dense in M2(C)+, we conclude
from the continuity of the map V (x) (on S

q
2) that V (x)(M2(C)+) ⊆ M2(C)+ for almost all x. Thus,

one may assume that V (x) ≥ 0 for all x ∈ X. From Lemma 5.2, it is known that V (x) is an isometric
order isomorphism from M2(C)sa onto M2(C)sa (both equipped with the operator norms). Moreover,
because B(M2(C)sa) ∼= B(Sq2) as locally convex spaces, we know that V is a measurable map from X to
B(M2(C)sa). Consequently, Θ(h)(x) := V (x)(h(x)) (h ∈ L∞(µ;M2(C))) is the Jordan ∗-isomorphism
that satisfies the requirement. �

The following lemma is a simple case of [6, Corollary 1].

Lemma 5.5. Let (X,µ) be a semifinite measure space. If Υ is an orthoisomorphism from the projection
lattice P(L∞(µ)) onto itself, then Υ extends to a ∗-isomorphism from L∞(µ) onto itself.

Proposition 5.6. Let M be a type I2 von Neumann algebra and Φ : Lp
+(M)11−ϵ → Lp

+(N)11−ϵ be a
metric preserving surjection, where ϵ ∈ (0, 1]. There exists a Jordan ∗-isomorphism Θ : N → M such
that Φ(S

1
p ) = Θ∗(S)

1
p (S ∈ L1

+(M)11−ϵp).

Proof. As the case of p = 2 follows directly from [4, Théorème 3.3] and Proposition 3.5, we will only
consider the case of p ̸= 2. It follows from Theorem 1.2 (which was established in Section 4 above) that
there is a Jordan ∗-isomorphism from N to M . By composing Φ with this isomorphism, we may assume
that N = M . By Proposition 3.5, the map Φ extends to an isometric order isomorphism from Lp

sa(M)
onto itself.

Let M = L∞(µ)⊗M2(C) for a semifinite measure space (X,µ). It follows from [6, Lemma 1] that the
map Υ as given by Proposition 3.5 restricts to an orthoisomorphism from P(Z(M)) = P(L∞(µ)) onto
itself. Let Ψ : L∞(µ) → L∞(µ) be the ∗-isomorphism extending this restriction (as given in Lemma 5.5).
Replacing Φ with its composition with Ψ−1 ⊗ id : M → M , we may assume that Φ preserves central
supports.

Consider a family {Xi}i∈I of pairwise disjoint measurable subsets of finite measures with X =∪
i∈I Xi. If µi := µ|Xi

, one see from the central support preserving assumption of Φ that it restricts to an
isometric order isomorphism from Lp

sa(µi;M2(C)) onto itself. Therefore, Lemma 5.4 produces a Jordan
∗-automorphism Θi on L∞(µi;M2(C)) that implements Φ|Lp

sa(µi;M2(C)). Now, it is not hard to verify
that the map from M ∼=

⊕ℓ∞

i∈I L
∞
sa (µi;M2(C)) to itself induced by {Θi}i∈I is the Jordan ∗-isomorphism

satisfying the asserted property. �

5.2. The case of algebras having EP1. In this section, we verify Theorem 1.3 for non-type I2 algebras
that satisfy an extra assumption, the so-called EP1. Let us first give the reason why we need this
assumption through the illustration of the commutative case.

Let (X,µ) and (Y, ν) be two semi-finite measure spaces. Let p ∈ (1,∞) and ϵ ∈ (0, 1). Suppose
that Φ : Lp

+(µ)
1
1−ϵ → Lp

+(ν)
1
1−ϵ is a metric preserving bijection. By Proposition 3.5, we can extend

Φ to a metric preserving affine bijection Ψ from Lp
+(µ) onto Lp

+(ν). The map Ψ̄ : f 7→ Ψ(f1/p)p is
then a bijective map from L1

+(µ) onto L1
+(ν). However, we do not know a priori that this continuous

bijection Ψ̄ is isometric or affine. Nevertheless, it can be shown that convex combinations of elements
with orthogonal supports are sent to the corresponding convex combinations under Ψ̄. If it happens that
every such “orthogonally affine” map is actually affine, then Ψ̄ will restrict to an affine bijection from
the normal state space L∞(µ) onto that of L∞(ν), and we can use a well-known result to obtain the
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∗-isomorphism from L∞(ν) onto L∞(µ) that induces Φ. Fortunately, some von Neumann algebras do
satisfy this property (e.g. semi-finite ones), and they are studied under the name EP1. In fact, the EP1

property was first introduced by K. Watanabe (see [34]) and was extended to EPp (for any p ∈ [1,∞))
by D. Sherman (see [28]). Let us restate this property clearly in the following.

Definition 5.7. Let M be a von Neumann algebra.

(a) For a normed space X, a map τ : L1
+(M)11 → X is said to be orthogonally affine if for every s ∈ (0, 1),

τ(sR+ (1− s)T ) = sτ(R) + (1− s)τ(T ) whenever R, T ∈ L1
+(M)11 with sR · sT = 0.

(b) M is said to have EP1 if every norm continuous orthogonally affine function κ : L1
+(M)11 → [0, 1] is

actually affine.

Remark 5.8. (a) Our definition of EP1 is the same as the one introduced in [28]. In fact, suppose that
κ : L1

+(M)11 → [0, 1] is a norm continuous orthogonally affine function. We define ρ : L1
+(M) → R+ by

ρ(T ) := ∥T∥κ(T/∥T∥) (T ∈ L1
+(M) \ {0}).

Since ∥sR + (1 − s)T∥ = s∥R∥ + (1 − s)∥T∥ for any R, T ∈ L1
+(M), it is not hard to check that ρ will

satisfy the four conditions in [28, Definition 4.1] for C = 1. Conversely, if a function ρ : L1
+(M) → R+

satisfies the four conditions in [28, Definition 4.1], and we define κ : L1
+(M)11 → [0, 1] by

κ(T ) := ρ(T )/C (T ∈ L1
+(M)11),

then κ is a norm continuous orthogonally affine map.

(b) It was shown in [28, Theorem 1.2] that all semifinite algebras without type I2 summand, all hyperfinite
algebras without type I2 summand as well as all type III0 factors with separable preduals have EP1.
In fact, all these algebras are approximately semifinite algebras, and it was shown in [28] that all
approximately semifinite algebras with no type I2 summand have EP1 (the precise statement is stated
in Proposition A.7). For the benefit of the reader, we will recall in the appendix some materials from
[28] that lead to this fact.

Lemma 5.9. Suppose that M has EP1. Let Φ : L1
+(M)11 → L1

+(N)11 be a norm continuous orthogonally
affine map (not assumed to be surjective). Then Φ is an affine map.

Proof. Fix an arbitrary element f ∈ L1(N)∗+ with ∥f∥ ≤ 1. Consider the map κ : L1
+(M)11 → [0, 1] given

by κ(R) := f(Φ(R)). Clearly, κ is a norm-continuous orthogonally affine function. By the assumption,
we know that κ is affine, and hence Φ is affine (since f is chosen arbitrarily). �

As said in [28], the von Neumann algebra M2(C) does not have EP1. In fact, Lemma 5.9 does not
hold for M = M2(C), as shown in the following.

Example 5.10. Recall that in the so-called Bloch sphere model there is a metric preserving affine bijection
from L1

+(M2(C))11 (considered as the state space of M2(C)) onto the closed unit ball B of R3. More
precisely, fix any a ∈ M2(C)+ with normalized trace being 1. There exist u, v, w ∈ R with u2+v2+w2 ≤ 1
such that

a =
1

2

(
1− u v + iw
v − iw 1 + u

)
.

Conversely, 1
2

(
1− u v + iw
v − iw 1 + u

)
is positive when u2 + v2 + w2 ≤ 1. The assignment Ra : b 7→ Tr(ba)

is a state of M2(C) (i.e., it belongs to L1
+(M2(C))11 under the identification L1(M2(C)) ∼= M2(C)∗), and

any state of M2(C) is of this form. Moreover, Ra is pure, i.e., sRa
is a rank one projection, exactly when
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u2 + v2 +w2 = 1. We thus identify the state Ra with the point (u, v, w) in B, and the set of pure states
with the unit sphere S. Furthermore, it is easy to see that for any other state Rb ∈ L1

+(M2(C))11, one

has sRa
sRb

= 0 if and only if b = 1
2

(
1 + u −v − iw

−v + iw 1− u

)
.

Now, consider a homeomorphism Γ from S onto itself that does not preserve the metric but satisfies
Γ(−(u, v, w)) = −Γ((u, v, w)) ((u, v, w) ∈ S).

Consider Φ : B → B to be the map that sends (2s−1)(u, v, w) to (2s−1)Γ(u, v, w) for any s ∈ [0, 1] and
(u, v, w) ∈ S. It is easy to see that Φ is a continuous orthogonally affine map extending Γ. However, Φ
cannot be affine, because continuous affine bijections between normal state spaces are metric preserving.

Proposition 5.11. Let p ∈ (1,∞), and let M and N be von Neumann algebras such that M has EP1

and M � C. Suppose that ϵ ∈ (0, 1] and Φ : Lp
+(M)11−ϵ → Lp

+(N)11−ϵ is a metric preserving surjection.
There is a Jordan ∗-isomorphism Θ : N → M satisfying

Φ(R
1
p ) = Θ∗(R)

1
p (R

1
p ∈ Lp

+(M)11−ϵ) (5.2)

Proof. By Proposition 3.5, the map Φ extends to a metric preserving affine bijection Φ̄ : Lp
+(M) →

Lp
+(N). Since Φ̄(0) = 0, we know that Φ̄ restricts to a bijection from Lp

+(M)11 onto Lp
+(N)11. Let

Λ : L1
+(M)11 → L1

+(N)11 be the bijection defined by

Λ(S) := Φ̄(S
1
p )p (S ∈ L1

+(M)11). (5.3)
Suppose that s ∈ (0, 1) and R, T ∈ L1

+(M)11 satisfying sR · sT = 0. It follows from Lemma 2.2 and the
affineness of Φ̄ that

Λ(sR+ (1− s)T ) = Φ̄
(
(sR+ (1− s)T )

1
p
)p

= Φ̄
(
s

1
pR

1
p + (1− s)

1
pT

1
p
)p

=
(
s

1
p Φ̄(R

1
p ) + (1− s)

1
p Φ̄(T

1
p )
)p

= sΛ(R) + (1− s)Λ(T ).

In other words, Λ is orthogonally affine. Moreover, we know from Lemma 2.1(c) that the bijection
Λ is a homeomorphism. It now follows from Lemma 5.9 and the hypothesis that Λ is affine. Thus,
[16, Theorem 4.5] gives a Jordan ∗-isomorphism Θ : N → M such that for every T ∈ L1

+(M)11, one
has Λ(T ) = Θ∗(T ), or equivalently, Φ̄(T

1
p ) = Θ∗(T )

1
p . From this, one obtains Relation (5.2) (as Φ̄ is

positively homogeneous). �

5.3. The proof of the second main theorem. Theorem 1.3 is a direct consequence of the following
more general result. For a von Neumann algebra M if M0 is the type I2 part of M and M = M0 ⊕M1,
then M1 is called the non-type-I2 part of M . Note that by Proposition A.7 and Lemma A.6, if M is
approximately semi-finite, then its non-type-I2 part of M has EP1.

Theorem 5.12. Let p ∈ (1,∞) and ϵ ∈ (0, 1]. Suppose that M and N are von Neumann algebras
with M � C such that the non-type-I2 part of M has EP1. If Φ : Lp

+(M)11−ϵ → Lp
+(N)11−ϵ is a metric

preserving bijection, then there is a Jordan ∗-isomorphism Θ : N → M satisfying Φ(R
1
p ) = Θ∗(R)

1
p , for

any R ∈ L1
+(M)1

p

1−ϵp .

Proof. It follows from Proposition 3.5 that Φ extends to an isometric order isomorphism, again denoted
by Φ, from Lp

sa(M) onto Lp
sa(N). Moreover, as in Proposition 3.5, the assignment sT 7→ sΦ(T ) induces

an orthoisomorphism Υ from P(M) onto P(N).

Let e0 be the central projection in M with e0M being the type I2 part of M . If f0 := Υ(e0), then f0 is
a central projection. Therefore, Φ can be written as a sum of an order preserving bijective isometry Φ0 :
Lp
sa(e0M) → Lp

sa(f0N) and order preserving bijective isometry Φ1 : Lp
sa((1 − e0)M) → Lp

sa((1 − f0)N).
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By Theorem 1.2, we know that e0M and (1 − e0)M are Jordan ∗-isomorphic to f0N and (1 − f0)N ,
respectively. Thus, f0N is the type I2 part of N .

Now, Proposition 5.6 produces a Jordan ∗-isomorphism Θ0 : f0N → e0M such that Φ0(S
1
p ) = Θ∗

0(S)
1
p

for each S ∈ L1
+(e0M), while Proposition 5.11 produces a Jordan ∗-isomorphism Θ1 : (1 − f0)N →

(1− e0)M such that Φ1(T
1
p ) = Θ∗

1(T )
1
p for each T ∈ L1

+((1− e0)M). Set Θ := Θ0 +Θ1. As Φ is linear,
one concludes that Φ(R

1
p ) = Θ∗(R)

1
p as required. �

Appendix A. Approximately semifinte algebras and property EP1

The notion of EP1 is first introduced by Watanabe in [34] and further studied by Sherman in [28].
In [28, Theorem 1.2], some algebras with EP1 were listed, and their proofs were given in the main body
of [28] (in fact, the more general case of EPp was considered there). In particular, it was shown that an
approximately semifinite algebra with no type I2 summand has EP1. However, the proof for this fact
scatters in [28] and is not easy to trace. For the benefit of the readers, we collect some facts as well as
some arguments from both [28] and [34] that lead to the above statement. There is no new result nor
new proof given in this appendix.

First of all, let us recall from [34, Theorem 4.8] the following result.

Lemma A.1. Any von Neumann algebra with a normal faithful tracial state and with no type I2 summand
has EP1.

Secondly, we recall the following lemma from [28, Theorem 5.3(a)].

Lemma A.2. Let M be a von Neumann algebra. Suppose that there is an increasing family {Mi}i∈I of
von Neumann subalgebras (of M) having EP1 such that

∪
i∈I Mi is σ(M,M∗)-dense in M , and that for

each i ∈ I, there is a normal conditional expectation Ei : M → Mi with Ei(1) being the identity of Mi

and Ei ◦ Ej = Ei whenever i ≤ j. Then M has EP1.

Suppose now that M is a semifinite algebra without type I2 summand. Let M1 and M2 be the type
I and the type II parts of M respectively. Clearly, qM2q does not have any type I2 summand, for any
q ∈ P(M2). On the other hand, M1 can be decomposed as

⊕
λ∈Λ L∞(Xλ,L(Hλ)) with dimHλ ̸= 2 for

every λ ∈ Λ. Thus, there exists an increasing net {pi}i∈I in the set
{p ∈ P(M) : pMp has a normal faithful tracial state and does not have any type I2 summand}

that σ(M,M∗)-converges to 1. This, together with Lemmas A.1 and A.2, gives the following.

Proposition A.3. If M is a semifinite von Neumann algebra with no type I2 summand, then M has
EP1.

Our next lemma follows readily from the definition of EP1, because all elements in L1
+(M)11 have

disjoint supports from elements in L1
+(N)11.

Lemma A.4. If M and N are two von Neumann algebras with EP1, then M ⊕N has EP1.

Let us now recall the definition of approximately semifinite algebras from [28].
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Definition A.5. A von Neumann algebra M is said to be approximately semifinite if there is an increas-
ing family {Mi}i∈I of semifinite von Neumann subalgebras as well as a net {Ei}i∈I of normal conditional
expectations satisfying the conditions as in Lemma A.2. In this case, {(Mi, Ei)}i∈I is called a semifinite
paving for M .

Lemma A.6. If N and L are von Neumann algebras with L⊕N being approximately semifinite, then
N is approximately semifinite.

Indeed, if {(Mi, Ei)}i∈I is a semifinite paving for L ⊕ N , and P : L ⊕ N → N is the canonical
projection, then {(P (Mi), P ◦ Ei|N )}i∈I is a semifinite paving for N .

Proposition A.7. If M is an approximately semifinite von Neumann algebra with no type I2 summand,
then M has EP1.

In fact, we consider L and N to be the finite part and the properly infinite part of M , respectively. It
follows from Proposition A.3 that L has EP1. Moreover, by Lemma A.6, the algebra N is approximately
semifinite. If {(Ni, Ei)}i∈I is a semifinite paving for N , then {(Ni ⊗M3(C), Ei ⊗ id)}i∈I is a semifinite
paving for N ⊗M3(C) ∼= N (because N is properly infinite). Since the semifinite algebra Ni ⊗M3(C)
can never have a type I2 summand, we know from Proposition A.3 and Lemma A.2 that N has EP1.
Now, it follows from Lemma A.4 that M has EP1.
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