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Abstract. The Opial property of Hilbert spaces is essential in many fixed point theorems
of non-expansive maps. While the Opial property does not hold in every Banach space, the
Bregman-Opial property does. This suggests us to study fixed point theorems for various
Bregman non-expansive like maps in the general Banach space setting. In this paper, after
introducing the notion of Bregman generalized hybrid sequences in a reflexive Banach space,
we prove (with using the Bregman-Opial property instead of the Opial property) convergence
theorems for such sequences. We also provide new fixed point theorems for Bregman generalized
hybrid maps defined on an arbitrary but not necessarily convex subset of a reflexive Banach
space. We end this paper with a brief discussion of the existence of Bregman absolute fixed
points of such maps.

1. Introduction

Let T : C → E be a nonexpansive map from a nonempty subset C of a (real) Banach space
E into E. Several iterative schemes, e.g., in [7, 8, 14], developed for locating fixed points in
F (T ) = {x ∈ C : Tx = x} assume the Opial property [26] of E. The Opial property states that
for any weakly convergent sequence xn ⇀ x in E, we have

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, for all y ∈ E \ {x}.

It is well known that all Hilbert spaces, all finite dimensional Banach spaces, and the Banach
spaces lp (1 ≤ p <∞) satisfy the Opial property. However, not every Banach space satisfies the
Opial property; see, for example, [6, 11]. We thus ask for a more subtle property to implement
with the general iterative fixed point algorithms.

The Bregman distance Dg is an appropriate candidate, because it holds the Bregman-Opial
inequality for any Banach space as shown in Lemma 1.1 below. Let g : E → R be a strictly
convex and Gâteaux differentiable function on a Banach space E. The Bregman distance [4]
(see also [1, 3]) Dg on E is defined by

Dg(x, y) = g(x)− g(y)− 〈x− y,∇g(y)〉, for all x, y ∈ E. (1.1)

It follows from the strict convexity of g that Dg(x, y) ≥ 0 for all x, y in E; and Dg(x, y) = 0
exactly when x = y. However, Dg might not be symmetric and Dg might not satisfy the
triangular inequality.

Lemma 1.1 ( [12, Lemma 5.1], see also [25]). Let g : E → R be a strictly convex and Gâteaux
differentiable function on a Banach space E. For any weakly convergent sequence xn ⇀ x in
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E, we have
lim sup
n→∞

Dg(xn, x) < lim sup
n→∞

Dg(xn, y), for all y ∈ E \ {x}.

As shown in the proof of [12, Lemma 5.1], an alternative form of the Bregman-Opial property
reads

lim inf
n→∞

Dg(xn, x) < lim inf
n→∞

Dg(xn, y), for all y ∈ E \ {x}.

When E is a smooth Banach space, if we choose the Bregman function g(x) = ‖x‖2 then
∇g(x) = 2Jx, where J is the normalized duality mapping from E into its Banach dual space
E∗. The Bregman distance Dg(·, ·) reduces to the usual bilinear form φ(·, ·) as

Dg(x, y) = φ(x, y) := ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for all x, y ∈ E.

In particular, when E is a Hilbert space, we have Dg(x, y) = ‖x− y‖2.
The Bregman distanceDg is widely used in quantum information theory. Let f : [0,+∞)→ R

be any strictly convex and Fréchet differentiable function. When g = trace ◦f , it arises from
(1.1) the Bregman divergence between quantum data, i.e., positive-definite square matrices,

Dg(A,B) = trace(f(A)− f(B)− f ′(B)(A−B)).

Here, the matrices f(A), f(B) and f ′(B) are defined through functional calculus. For example,
we have

classical divergence: Dg(A,B) = trace(A2)+trace(B2)−2 trace(BA), while f(x) = x2,

Umegaki relative entropy: Dg(A,B) = trace(A(logA− logB)), while f(x) = x log x,

Tsallis relative entropy: Dg(A,B) = 1
q−1 trace(AqB1−q −A), while f(x) = xq−x

q−1 , and

Quantum divergence: Dg(A,B) = ‖
√
A−
√
B‖22, while f(x) = (

√
x− 1)2.

Here, ‖ · ‖2 is the Hilbert-Schmidt norm of matrices. See, e.g., [5] for details.
Let g : E → R be strictly convex and Gâteaux differentiable, and C ⊆ E be nonempty. A

mapping T : C → E is said to be

• Bregman nonexpansive if

Dg(Tx, Ty) ≤ Dg(x, y), for all x, y ∈ C;

• Bregman quasi-nonexpansive if the fixed point set F (T ) 6= ∅ and

Dg(p, Tx) ≤ Dg(p, x), for all x ∈ C, p ∈ F (T );

• Bregman nonspreading if

Dg(Tx, Ty) +Dg(Ty, Tx) ≤ Dg(Tx, y) +Dg(Ty, x), for all x, y ∈ C;

• Bregman generalized hybrid if there exist α, β ∈ R such that

αDg(Tx, Ty) + (1− α)Dg(x, Ty) ≤ βDg(Tx, y) + (1− β)Dg(x, y), for all x, y ∈ C.
It is clear that nonexpansive, quasi-nonexpansive, nonspreading [18, 19, 37] and generalized

hybrid [35] maps of Hilbert spaces are exactly those Bregman nonexpansive, Bregman quasi-
nonexpansive, Bregman nonspreading and Bregman generalized hybrid maps with respect to
the Bregman distance Dg with g(x) = ‖x‖2. Bregman generalized hybrid maps is introduced
and studied in [20], and it seems to be one of the most general notion among those mentioned
above. We continue to study it in this paper.

The Bregman-Opial property (Lemma 1.1) suggests us the following.

Problem 1.2. Can we develop fixed point theorems and convergence results for the Picard
and other iteration schemes for various Bregman nonexpansive-like maps in the general Banach
space setting?
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On the other hand, the theory of approximating fixed points of general nonlinear maps has
many important applications (see, for example, [15, 24, 38]). However, a little work has been
done without the convexity assumption. Djafari Rouhani ( [27–34]) developed a theory of
approximating fixed points for nonlinear maps with non-convex domains in the Hilbert space
setting. The Opial property of the underlying Hilbert space plays an important role in Rouhani’s
theory. This suggests us to post another problem.

Problem 1.3. Can we extend fixed point theorems for nonlinear maps on non-convex do-
mains in Hilbert spaces to the more general Banach space setting without assuming the Opial
property?

We answer above problems in this paper. In Section 2, we collect some basic properties
of Bregman distances. In Section 3, utilizing the Bregman-Opial property, we investigate the
weak convergence of Bregman generalized hybrid sequences, which can be produced by the
Picard iterations for Bregman generalized hybrid maps. In section 4, assuming the existence
of a bounded and weakly asymptotically regular orbit, we present fixed point and convergence
theorems for Bregman generalized hybrid maps, which might be defined on non-convex domains
in reflexive Banach spaces. Finally, in section 5, we study the existence of absolute fixed points
for Bregman generalized hybrid maps.

Our results improve and supplement those in [20], and also some known results in the liter-
ature, e.g., [15, 16,21,22,27–34,36].

2. Preliminaries and Bregman distances

Let E be a (real) Banach space with norm ‖ ·‖ and dual space E∗. For any x in E, we denote
the value of x∗ in E∗ at x by 〈x, x∗〉. When {xn}n∈N is a sequence in E, we denote the strong
convergence of {xn}n∈N to x ∈ E by xn → x and the weak convergence by xn ⇀ x. A bounded
sequence {xn}n∈N∪{0} is said to be asymptotically regular (resp. weakly asymptotically regular),
if xn+1 − xn → 0 (resp. xn+1 − xn ⇀ 0) as n→∞.

For any r > 0, let Br := {z ∈ E : ‖z‖ ≤ r}. A function g : E → R is said to be

• strictly convex if

g(αx+ (1− α)y) < αg(x) + (1− α)g(y), ∀ distinct x, y ∈ E,∀α ∈ (0, 1);

• strongly coercive if

lim
‖xn‖→+∞

g(xn)

‖xn‖
= +∞;

• locally bounded if g(Br) is bounded for all r > 0.

A function g : E → R is said to be Gâteaux differentiable at x if limt→0
g(x+ty)−g(x)

t exists
for any y. In this case, the gradient ∇g(x) is defined as the linear functional in E∗ such that

〈y,∇g(x)〉 = lim
t→0

g(x+ ty)− g(x)

t
, for all y ∈ E.

We call g Fréchet differentiable at x (see, for example, [2, p. 13] or [17, p. 508]) if for all ε > 0,
there exists δ > 0 such that

| g(y)− g(x)− 〈y − x,∇g(x)〉 |≤ ε‖y − x‖ whenever ‖y − x‖ ≤ δ.
The function g is said to be Gâteaux (resp. Fréchet) differentiable if it is Gâteaux (resp. Fréchet)
differentiable everywhere. If a convex function g : E → R is Gâteaux differentiable, then
∇g is norm-to-weak∗ continuous (see, for example, [2, Proposition 1.1.10]); if g is Fréchet
differentiable, then ∇g is norm-to-norm continuous (see, [17, p. 508]).
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Let g : E → R be a strictly convex and Gâteaux differentiable function. The Bregman
distance defined in (1.1) satisfies the three-point identity [4]

Dg(x, z) = Dg(x, y) +Dg(y, z) + 〈x− y,∇g(y)−∇g(z)〉, for all x, y, z ∈ E. (2.1)

In particular,

Dg(x, y) = −Dg(y, x) + 〈y − x,∇g(y)−∇g(x)〉, for all x, y ∈ E. (2.2)

If g is locally bounded, by the definition (1.1) we have {Dg(x, y) : x ∈ Br} is bounded for all
r > 0.

Let C be a nonempty, closed and convex subset of E and {xn}n∈N be a bounded sequence
in E. For any x in E, we set

Br(x, {xn}n∈N) = lim sup
n→∞

Dg(xn, x).

The Bregman asymptotic radius of {xn}n∈N relative to C is defined by

Br(C, {xn}n∈N) = inf{Br(x, {xn}) : x ∈ C}.
The Bregman asymptotic center of {xn}n∈N relative to C is the set

BAC(C, {xn}n∈N) = {x ∈ C : Br(x, {xn}n∈N) = Br(C, {xn}n∈N)}.
We call a point in BAC(E, {xn}n∈N) simply a Bregman asymptotic center of {xn}n∈N.

Proposition 2.1 ( [25, Proposition 9]). Let C be a nonempty, closed and convex subset of a
reflexive Banach space E, and let g : E → R be strictly convex, Gâteaux differentiable, and
locally bounded on E. If {xn}n∈N is a bounded sequence of C, then BAC(C, {xn}n∈N) is a
singleton.

Definition 2.2. Let E be a Banach space. A function g : E → R is said to be a Bregman
function [2] if the following conditions are satisfied:

(i) g is continuous, strictly convex and Gâteaux differentiable;
(ii) the set {y ∈ E : Dg(x, y) ≤ r} is bounded for all x in E and r > 0.

We call g a nice Bregman function if it holds, in addition,

(iii) g is strong coercive, locally bounded, and ∇g : E → E∗ is weak-to-weak* sequentially
continuous.

The following lemma follows from Butnariu and Iusem [2] and Zǎlinescu [39].

Lemma 2.3 ( [2, 39]). Let E be a reflexive Banach space and g : E → R a strongly coercive
Bregman function. Then

(i) ∇g : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;
(ii) 〈x− y,∇g(x)−∇g(y)〉 = 0 if and only if x = y;

(iii) {x ∈ E : Dg(x, y) ≤ r} is bounded for all y in E and r > 0;

3. Bregman generalized hybrid sequences

We define a new concept of Bregman generalized hybrid sequences which extends the notions
of hybrid and nonexpansive sequences introduced and studied in [33].

Definition 3.1. Fix a Bregman function g : E → R on a reflexive Banach space E. A sequence
{xn}n∈N∪{0} in E is said to be a Bregman generalized hybrid sequence if there exist real numbers
α, β such that

αDg(xi+1, xj+1) + (1− α)Dg(xi, xj+1) ≤ βDg(xi+1, xj) + (1− β)Dg(xi, xj), for all i, j ≥ 0.
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It is plain that if T is a Bregman generalized hybrid map then any orbit {xn := Tnx}n∈N∪{0}
is a Bregman generalized hybrid sequence. Here, x0 = T 0x = x by convention.

Notations 3.2. Let E be a reflexive Banach space and g : E → R be strictly convex and
Gâteaux differentiable on E. Given a sequence {xn}n∈N∪{0} in E. Denote by

sn :=
1

n

n−1∑
i=0

xi,

G := {q ∈ E : lim
n→∞

Dg(q, xn) exists}, and

G1 := {q ∈ E : the sequence {Dg(q, xn)}n∈N∪{0} is non-increasing}.

Lemma 3.3. If G1 6= ∅, then G1 is closed and convex.

Proof. Let n ≥ 0 and G1,n := {z ∈ E : Dg(z, xn+1) ≤ Dg(z, xn)}. We have

Dg(z, xn+1) ≤ Dg(z, xn),

if and only if

g(z)− g(xn+1)− 〈z − xn+1,∇g(xn+1)〉 ≤ g(z)− g(xn)− 〈z − xn,∇g(xn)〉,

if and only if

〈z,∇g(xn)−∇g(xn+1)〉 ≤ g(xn+1)− g(xn) + 〈xn,∇g(xn)〉 − 〈xn+1,∇g(xn+1)〉.
Clearly, all G1,n are closed and convex, and thus so is G1 =

⋂∞
n=1G1,n. �

The following theorem is an extension of the corresponding one of Takahashi and Takeuchi
[36].

Theorem 3.4. Let E be a reflexive Banach space and let g : E → R be a nice Bregman
function. Let {xn}n∈N∪{0} be a Bregman generalized hybrid sequence in E with respect to Dg.
Assume that {xn}n∈N∪{0} is weakly asymptotically regular. Then the following are equivalent:

(i) G1 6= ∅.
(ii) G 6= ∅.

(iii) {xn}n∈N is bounded in E.
(iv) {xn}n∈N converges weakly to some p ∈ E, as n→∞.

In this case, the weak limit p = limn→∞ xn = limn→∞ sn ∈ G1, is the Bregman asymptotic
center of the sequence {xn}n∈N∪{0} in E.

Proof. It is clear that (i) implies (ii). The assertion (ii) implying (iii) follows from Definition
2.2(ii).

Let us show that (iv) implies (i). It is clear that the Cesáro means sn ⇀ p. In the light of
the three-point identity (2.1), we have

〈xl − p,∇g(xm)−∇g(p)〉 = Dg(xl, p) +Dg(p, xm)−Dg(xl, xm), for all l,m ∈ N.
It follows

〈xi+1 − p,∇g(xk+1)−∇g(p)〉 = Dg(xi+1, p) +Dg(p, xk+1)−Dg(xi+1, xk+1),

〈xi+1 − p,∇g(xk)−∇g(p)〉 = Dg(xi+1, p) +Dg(p, xk)−Dg(xi+1, xk),

〈xi − p,∇g(xk+1)−∇g(p)〉 = Dg(xi, p) +Dg(p, xk+1)−Dg(xi, xk+1),

〈xi − p,∇g(xk)−∇g(p)〉 = Dg(xi, p) +Dg(p, xk)−Dg(xi, xk),



6 NARAGHIRAD, SHI AND WONG

Since {xn}n∈N∪{0} is a Bregman generalized hybrid sequence, for some real scalars α, β we have

α〈xi+1 − p,∇g(xk+1)−∇g(p)〉 − β〈xi+1 − p,∇g(xk)−∇g(p)〉
+ (1− α)〈xi − p,∇g(xk+1)−∇g(p)〉 − (1− β)〈xi − p,∇g(xk)−∇g(p)〉

≥ (α− β)(Dg(xi+1, p)−Dg(xi, p)) +Dg(p, xk+1)−Dg(p, xk). (3.1)

Since {xn}n∈N∪{0} is bounded, 1
n

∑n−1
i=0 xi+1 − sn =

xn − x0
n

−→ 0 as n → ∞. Moreover, due

to the local boundedness of g, we have {Dg(xn, p)}n∈N∪{0} is bounded. Summing up (3.1) from
i = 0 to i = n− 1, dividing by n and letting n→∞, we get 0 ≥ Dg(p, xk+1)−Dg(p, xk). This
ensures that p ∈ G1.

Now we show (iii) implies (iv). By the boundedness of {xn}n∈N∪{0}, there is a weakly
convergent subsequence xnj ⇀ p for some point p in E. As in (3.1), for some real scalars α and
β we have

α〈xnj+i+1 − p,∇g(xk+1)−∇g(p)〉 − β〈xnj+i+1 − p,∇g(xk)−∇g(p)〉
+ (1− α)〈xnj+i − p,∇g(xk+1)−∇g(p)〉 − (1− β)〈xnj+i − p,∇g(xk)−∇g(p)〉

≥ (α− β)(Dg(xnj+i+1, p)−Dg(xnj+i, p)) +Dg(p, xk+1)−Dg(p, xk). (3.2)

Fix a positive integer m. Summing up (3.2) from i = 0 to i = m − 1, dividing by m, letting
j →∞ and using the weakly asymptotic regularity of {xn}n∈N{0}, we get

0 ≥ (α− β) lim sup
j→∞

1

m
(Dg(xnj+m, p)−Dg(xnj , p)) +Dg(p, xk+1)−Dg(p, xk).

By the local boundedness of g, we know that {Dg(xn, p)}n∈N∪{0} is a bounded sequence. Letting
m −→ +∞, we get Dg(p, xk+1)−Dg(p, xk) ≤ 0, which implies that p ∈ G1.

Let xmj ⇀ q for another weak convergent subsequence. By above arguments, we have q ∈ G1.
Therefore,

〈q − p,∇g(xn)〉 = g(q)− g(p) +Dg(p, xn)−Dg(q, xn) converges as n→∞.
Since ∇g is weak-to-weak* sequentially continuous,

lim
j→∞
〈q − p,∇g(xnj )〉 = 〈q − p,∇g(p)〉

= lim
j→∞
〈q − p,∇g(xmj )〉 = 〈q − p,∇g(q)〉.

It follows
〈q − p,∇g(q)−∇g(p)〉 = 0.

By Lemma 2.3(ii), we have q = p. This concludes that the bounded sequence xn ⇀ p, and thus
sn ⇀ p.

Finally, utilizing the Bregman-Opial property we conclude that p is the Bregman asymptotic
center of the sequence {xn}n∈N∪{0} in E. �

4. Fixed point and convergence theorems

In this section, we establish the existence of fixed points for Bregman generalized hybrid
maps in E. This extends corresponding results in [13, 16, 18–20, 27–34]. We start with the
following proposition.

Proposition 4.1. Let E be a reflexive Banach space and let g : E → R be a nice Bregman func-
tion. Let C be a nonempty subset of E and let T be a Bregman generalized hybrid self-mapping
of C with respect to Dg. Assume that for some x ∈ C, the sequence {xn := Tnx}n∈N∪{0} is
bounded (i.e. T has a bounded orbit), and weakly asymptotically regular. Then {Tnx}n∈N∪{0}
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converges weakly to its Bregman asymptotic center c. Moreover, for every y ∈ C, the orbit
{yn := Tny}n∈N∪{0} is bounded, and the sequence {Dg(c, yn)}n∈N∪{0} is non-increasing.

Proof. We first notice that both the sequences {xn}n∈N∪{0} and {yn}n∈N∪{0} are Bregman gen-
eralized hybrid sequences associated with the same real constants α, β from T . It follows from
Theorem 3.4 that both xn ⇀ c and sn = 1

n

∑n−1
i=0 xi ⇀ c as n → ∞, and that c ∈ G1 (for

the bounded sequence {xn}n∈N∪{0}). Let k ≥ 0 be a fixed integer. In view of the three-point
identity (2.1), we deduce that

Dg(c, yk+1)

=
α

n

n−1∑
i=0

Dg(c, yk+1) +
1− α
n

n−1∑
i=0

Dg(c, yk+1)

=
α

n

n−1∑
i=0

(Dg(c, xi+1) +Dg(xi+1, yk+1) + 〈c− xi+1,∇g(xi+1)−∇g(yk+1)〉)

+
1− α
n

n−1∑
i=0

(Dg(c, xi) +Dg(xi, yk+1) + 〈c− xi,∇g(xi)−∇g(yk+1)〉)

=
1

n

n−1∑
i=0

(αDg(xi+1, yk+1) + (1− α)Dg(xi, yk+1)) +
1

n

n−1∑
i=0

(αDg(c, xi+1) + (1− α)Dg(c, xi))

+
α

n

n−1∑
i=0

〈xi+1 − c,∇g(yk+1)−∇g(xi+1))〉+
(1− α)

n

n−1∑
i=0

〈xi − c,∇g(yk+1)−∇g(xi)〉

≤ 1

n

n−1∑
i=0

(βDg(xi+1, yk) + (1− β)Dg(xi, yk)) +
1

n

n−1∑
i=0

Dg(c, xi)

+
α

n
(Dg(c, xn)−Dg(c, x) + 〈xn − c,∇g(yk+1)−∇g(xn)〉 − 〈x− c,∇g(yk+1)−∇g(x)〉)

+
1

n

n−1∑
i=0

〈xi − c,∇g(yk+1)−∇g(xi)〉

=
1

n

n−1∑
i=0

(βDg(xi+1, yk) + (1− β)Dg(xi, yk)) +
1

n

n−1∑
i=0

Dg(c, xi)

−α
n

(Dg(xn, x) + 〈x− c,∇g(yk+1)−∇g(x)〉)

+
1

n

n−1∑
i=0

〈xi − c,∇g(yk)−∇g(xi)〉+
1

n

n−1∑
i=0

〈xi − c,∇g(yk+1)−∇g(yk)〉.

On the other hand, we have

1

n

n−1∑
i=0

Dg(xi+1, yk) =
1

n

n−1∑
i=0

Dg(xi, yk) +
Dg(xn, yk)−Dg(x0, yk)

n
.

Since g is local bounded, {Dg(xn, yk)} is a bounded sequence. Thus,

1

n

(
n−1∑
i=0

Dg(xi+1, yk)−
n−1∑
i=0

Dg(xi, yk)

)
=
Dg(xn, yk)−Dg(x0, yk)

n
→ 0, as n→∞.
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Similarly, {Dg(xn, x)} is a bounded sequence, and sn =
∑n

i=0 xn ⇀ c. We see that

1

n
(Dg(xn, x) + 〈x− c,∇g(yk+1)−∇g(x)〉)→ 0,

and

1

n

n−1∑
i=0

〈xi − c,∇g(yk+1)−∇g(yk)〉 = 〈sn − c,∇g(yk+1)−∇g(yk)〉 → 0, as n→∞.

Setting

θn,k =
β

n

(
n−1∑
i=0

Dg(xi+1, yk)−
n−1∑
i=0

Dg(xi, yk)

)
− α

n
(Dg(xn, x) + 〈x− c,∇g(yk+1)−∇g(x)〉)

+
1

n

n−1∑
i=0

〈xi − c,∇g(yk+1)−∇g(yk)〉,

and utilizing again the three-point identity (2.1), we arrive at

Dg(c, yk+1) ≤
1

n

n−1∑
i=0

Dg(c, xi) +
1

n

n−1∑
i=0

Dg(xi, yk)

+
1

n

n−1∑
i=0

〈c− xi,∇g(xi)−∇g(yk)〉+ θn,k

=
1

n

n−1∑
i=0

Dg(c, yk) + θn,k = Dg(c, yk) + θn,k.

Letting n → ∞, we obtain Dg(c, yk+1) ≤ Dg(c, yk), ∀k ≥ 0, as desired. This, together with
Definition 2.2(ii), implies that the sequence {yn}n∈N∪{0} is bounded. �

Theorem 4.2. Let E be a reflexive Banach space and let g : E → R be a nice Bregman function.
Let C be a nonempty subset of E and let T be a Bregman generalized hybrid self-mapping of
C with respect to Dg. Assume that T has a bounded and weakly asymptotically regular orbit
{xn := Tnx}n∈N∪{0}. Let c be the Bregman asymptotic center of {Tnx}n∈N∪{0}. Then any
Bregman generalized hybrid extension S of T on a set containing C ∪ {c} fixing c, i.e., Sc = c.

Proof. With the three-point identity (2.1) and the assumption that S being a Bregman gener-
alized hybrid extension of T , we have

〈xi+1 − Sc,∇g(Sc)−∇g(c)〉
= α〈xi+1 − Sc,∇g(Sc)−∇g(c)〉+ (1− α)〈xi − Sc,∇g(Sc)−∇g(c)〉
= α(Dg(xi+1, c)−Dg(xi+1, Sc)−Dg(Sc, c)) + (1− α)(Dg(xi, c)−Dg(xi, Sc)−Dg(Sc, c))

= αDg(xi+1, c) + (1− α)Dg(xi, c)− αDg(xi+1, Sc)− (1− α)Dg(xi, Sc)−Dg(Sc, c)

≥ αDg(xi+1, c) + (1− α)Dg(xi, c)− βDg(xi+1, c)− (1− β)Dg(xi, c)−Dg(Sc, c)

= (α− β)(Dg(xi+1, c)−Dg(xi, c))−Dg(Sc, c).

Summing up the above inequalities from i = 0 to i = n − 1, diving by n, letting n −→ ∞,
and noticing that (Dg(xn, c) − Dg(x, c))/n → 0 (since g is locally bounded) and sn ⇀ c (by
Theorem 3.4), we get

〈c− Sc,∇g(Sc)−∇g(c)〉+Dg(Sc, c) ≥ 0.
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This, together with (2.2), implies that

〈c− Sc,∇g(Sc)−∇g(c)〉 −Dg(c, Sc) + 〈c− Sc,∇g(c)−∇g(Sc)〉 ≥ 0,

and hence −Dg(c, Sc) ≥ 0. This amounts to Sc = c, and completes the proof. �

Corollary 4.3. Let C be a nonempty, closed, and convex subset of a reflexive Banach space E,
and let g : E → R be a nice Bregman function. Let T : C → C be a Bregman generalized hybrid
mapping with respect to Dg. Assume that T has a bounded and weakly asymptotically regular
orbit {xn := Tnx}n∈N∪{0}. Then the fixed point set F (T ) contains the Bregman asymptotic
center c of {Tnx}n∈N∪{0}.

Proof. Note that c is the weak limit of the Cesáro means sn = 1
n

∑n−1
i=0 xi. Since C is closed

and convex, we know that c ∈ C. It then follows from Theorem 4.2 that Tc = c. �

Remark 4.4. Corollary 4.3 improves [20, Theorem 4.3], in which it is assumed in addition that
the Bregman function g is uniformly convex and the orbit {Tnx}n∈N∪{0} is asymptotically
regular.

In the following, we prove a fixed point theorem for Bregman generalized hybrid maps defined
on non-convex domains in E. This is new, to the best of our knowledge, and extends or
supplements the corresponding results in [13,16,18,19,27–34].

Theorem 4.5. Let E be a reflexive Banach space and let g : E → R be a nice Bregman function.
Let T be a Bregman generalized hybrid self-mapping of a nonempty subset C of E with respect to
Dg. Then T has a fixed point if and only if T has a bounded and weakly asymptotically regular
orbit {Tnx}n∈N of some x ∈ C, and for any y in the closed convex hull conv{Tnx : n ≥ 0} of
this orbit, there is a unique point p ∈ C such that Dg(y, p) = inf{Dg(y, z) : z ∈ C}. In this
case, every orbit of T is bounded.

Proof. The necessity is obvious. Let us prove the sufficiency. Assume that {Tnx}n∈N is bounded
and weakly asymptotically regular for some x ∈ C. Let c be the weak limit as well as the
Bregman asymptotic center of {Tnx}n∈N. Since c ∈ conv{Tnx : n ≥ 0} (see Theorem 3.4),
there exists a unique p ∈ C such that Dg(c, p) ≥ Dg(c, z), z ∈ C. From Proposition 4.1, we
know that for every y ∈ C, the orbit {Tny}n∈N is bounded, and the nonnegative sequence
{Dg(c, Tny)}n∈N∪{0} is non-increasing. In particular, the sequence {Dg(c, Tnp)}n∈N∪{0} is non-
increasing. Hence we have

Dg(c, p) = inf{Dg(c, z) : z ∈ C} ≤ Dg(c, Tp) ≤ Dg(c, p).

Then the uniqueness of p implies that Tp = p. �

Definition 4.6. Fix a Bregman function g : E → R on a reflexive Banach space E. We say
that a nonempty subset C of E is Bregman Chebyshev with respect to its convex closure convC,
if for any y ∈ convC, there is a unique point x ∈ C such that Dg(y, x) = inf{Dg(y, z) ; z ∈ C}.
Corollary 4.7. Let E be a reflexive Banach space and let g : E → R be a nice Bregman
function. Let C be a nonempty subset of E which is Bregman Chebyshev with respect to its
convex closure, and let T be a Bregman generalized hybrid self-mapping of C with respect to
Dg. Then T has a fixed point in C, if and only if, T has a bounded and weakly asymptotically
regular orbit {Tnx}n∈N.

Proof. This is a direct consequence of Theorem 4.5. �

Remark 4.8. Our results supplement those in [27–34]. Since we do not assume the original Opial
property of the underlying Banach space as was the case in [27–34], our results are applicable
in, e.g., the Lebesgue function space Lp(µ) setting, where 1 < p < ∞ and p 6= 2, while these
spaces are not covered in [27–34].
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5. Bregman absolute fixed points

Recall that the set of Bregman attractive points of a map T : C → E from a nonempty subset
C of a Banach space E is

Ag(T ) := {x ∈ E : Dg(x, Ty) ≤ Dg(x, y),∀y ∈ C}.

If T is Bregman generalized hybrid, F (T ) ⊆ Ag(T ). In fact, let p ∈ F (T ). By definition, for
some real numbers α, β we have

αDg(Tp, Ty) + (1− α)Dg(p, Ty) ≤ βDg(Tp, y) + (1− β)Dg(p, y), for all y ∈ C.

Since Tp = p, we have Dg(p, Ty) ≤ Dg(p, y) for all y ∈ C. Thus, p ∈ Ag(T ).

Definition 5.1. Fix a Bregman function g : E → R on a reflexive Banach space E. Let T be a
Bregman generalized hybrid self-mapping of a nonempty subset C of E. A point p ∈ E is said
to be a Bregman absolute fixed point for T if the extension of T from C ∪ {p} to C ∪ {p} fixing
p is Bregman generalized hybrid, and every Bregman generalized hybrid extension of T fixes p.

Lemma 5.2. Let E be a reflexive Banach space and let g : E → R be a nice Bregman function.
Let C be a nonempty subset of E, and T be a Bregman generalized hybrid self-mapping of C with
respect to Dg and corresponding constants α and β. Let c be the Bregman asymptotic center of
a bounded and weakly asymptotically regular orbit {Tnx}n∈N of T . Let S : C ∪ {c} −→ C ∪ {c}
be the extension of T by fixing Sc = c.

(a) Assume α = β. Then S is Bregman generalized hybrid if and only if c ∈ Ag(T ).
(b) In general, S is Bregman generalized hybrid if c ∈ Ag(T ) and the orbit {Tnz}n∈N∪{0} of

every z ∈ C lies on the Bregman sphere centered at z, with radius Dg(z, c).

Proof. We first note that assuming c ∈ Ag(T ), the extension S is a Bregman generalized hybrid
self-mapping of C ∪ {c} if and only if the following inequality holds:

αDg(Tz, c) + (1− α)Dg(z, c) ≤ βDg(Tz, c) + (1− β)Dg(z, c), for all z ∈ C.

This is equivalent to (α − β)(Dg(z, c) −Dg(Tz, c)) ≥ 0 for all z ∈ C. The assertions are now
trivial. �

Theorem 5.3. Let E be a reflexive Banach space and let g : E → R be a nice Bregman function.
Let C be a nonempty subset of E, and T be a Bregman generalized hybrid self-mapping of C
with respect to Dg and corresponding constants α and β. Then the Bregman asymptotic center
c of a bounded and weakly asymptotically regular orbit {Tnx}n∈N is an absolute fixed point of T
if c ∈ Ag(T ), and either α = β, or the orbit of every x ∈ C lies on the Bregman sphere centered
at x, with radius Dg(x, c).

Proof. This is an immediate consequence of Theorem 4.2 and Lemma 5.2. �

Concluding Remarks

In this paper, we introduce the notion of Bregman generalized hybrid sequences. Using Breg-
man functions and Bregman distances we are able to prove ergodic and convergence theorems
for such sequences in a reflexive Banach space, while the Bregman-Opial property plays the role
of the Opial property. We also provide fixed point and absolute fixed point theorems for Breg-
man generalized hybrid maps defined on not necessarily convex domains in reflexive Banach
spaces.

The following table summarizes the usual setups in the literature concerning the existence of
a fixed point of a map M defined on a domain D of a space S with some extra conditions EC,
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and the approximation of a fixed point by various iterative algorithms. In each column of the
table, the properties stated in the above lines are stronger than those stated in the below lines.

Spaces Domains Maps Extra Conditions

S1: Hilbert space D1: convex M1: nonexpan-
sive

EC1: compact domain

S2: reflexive Banach
space with Opial
property

M2: quasi-
expansive

EC2: closed and
bounded domain

M3: (general-
ized) hybrid

EC3: a bounded norm
asymptotically regular
orbit

S3: reflexive Banach
space with a nice
Bregman function

D2: arbitrary M4: Bregman
generalized hy-
brid

EC4: a bounded weakly
asymptotically regular
orbit

While the results in this paper assume the weakest conditions S3-D2-M4-EC4, those in the
literature usually assume stronger conditions. Therefore, the results in this paper are among
the best one would use in the current situation.
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