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The linking von Neumann algebras of W*-TROs

HoNGJIE CHEN, LIGUANG WANG*, AND NGAI-CHING WONGT#,

In this note, we show that a von Neumann algebra can be written
as the linking von Neumann algebra of a W*-TRO if and only if
it contains no abelian direct summand. We also provide some new
characterizations of nuclear TROs and W*-exact TROs in terms
of the properties of their linking algebras.
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1. Introduction

A ternary ring of operators (or simply TRO) is a norm closed subspace V
of the Banach space B(K, H) of bounded linear operators between Hilbert
spaces K and H, which is closed under the triple product

(x,y,2) EV XV X VisayzeV.

TROs were first introduced by Hestenes ([13]), and pursued by many others.
In [18], it is proved that TROs form a special class of concrete operator spaces
and characterized TROs in terms of the operator space theoretic properties.
The interconnections between TROs and JC*-triples are studied in [3].

When V is a TRO, V* = {z* € B(H,K) : x € V} is also a TRO. We
assume that V' is non-degenerate in this note, in the sense that VK and
V#H are norm dense in H and K, respectively. A TRO V of B(K, H) is
called a W*-TRO if it is closed in the strongly operator topology (SOT), or
equivalently, closed in the weak operator topology, or the weak* topology of
B(K, H) ([24]).
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A fundamental tool to study TROs is the construction of the linking alge-
bra, that is, a particular C*-algebra containing the related TRO as a corner.
For example, an operator space is injective if and only if it is completely iso-
metric to a ternary corner of an injective C*-algebra (see, e.g., [1]). Let VV*
and V*V be the linear span of vw* and v*w for all v,w € V respectively.
Clearly, VV# and V*V are *-subalgebras of B(H) and B(K). Let

cv)y=vvia' and povy=vE'

denote the C*-algebras generated by VV*# and V#V respectively. The linking
C*-algebra A(V') of V' is defined by

= o )

When V is a W*-TRO, let
MWV)=VVES" and N(V)=VEVOOT

denote the von Neumann algebras generated by VV* and V#V respectively.
The linking von Neumann algebra R(V') of V' is defined by

M(V) Vv "

the double commutant of A(V') in B(H & K) (see, e.g., [7, Proposition 2.3]).

TROs and their associated linking algebras share many common proper-
ties, wherefore the application of operator algebraic methods simplifies the
study of TROs that are not algebras themselves. Basic properties and most
recent results of TROs are discussed in, e.g., [6, 9, 13, 12, 15, 16, 10, 11, 7,
17, 20, 22, 24] and references therein.

In this note, we show that a von Neumann algebra M can be written as
the linking von Neumann algebra R(V) of a W*-TRO V if and only if M
does not contain an abelian direct summand. We also provide new character-
izations of a TRO being nuclear or W*-exact in term of its linking algebra.
These results generalize, in particular, [17, Theorem 6.5] and [4, Theorem
4.1].
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2. The results

2.1. Conditions to be a linking von Neumann algebra of a
W*-TRO

Theorem 1. Let M be a von Neumann algebra. The following conditions
are equivalent.

(a) There is a W*-TROV such that its linking von Neumann algebra R(V') =
M.

(b) There exists a projection e in M with central covers Ce = Cr_ = 1.

(¢) M has no abelian direct summand.

Proof. For the implication (a) == (b), suppose M = R(V) is the linking
algebra of W*-TRO V as in (1). Then e = <(1) 8) is a projection in M with
Co=0Cr_c=1.

For the implication (b) = (a), suppose there exists a projection e in
M with central covers C. = Cj_. = I. Let V.= eM(I —e). Then V is a
W*-TRO with

- (40 )

We claim that R(V) = M.
To see M (V') = eMe, it suffices to show that eM_ e C M (V). Since

I=Cr_.= \/{u([ —e)u* : u is a unitary in M},

there is a net {F};}; of increasing finite subsets of the unitary group of M
such that

\/ u(l —e)u” — 1

ueF;

in the strong operator topology. Given z € M. Since exl/zu(l — e)u*xl/Qe
belongs to the von Neumann algebra M (V'), we have

)

exe = SOT-lim ex'/? ( \/ u(l — e)u*) e e M(V).

ueF;

Similarly, we see that N(V) = (I —e)M(1 — e). It follows M = R(V).
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For the implication (¢) = (b), suppose M has no abelian direct sum-
mand. We show that there is a projection e in M such that the central covers
Ce = Cr_ = I. Indeed, the assertion is contained in [14, Exercise 6.19]. For
completeness, we present a short proof below.

Write M = My & M. as the direct sum of its discrete part M, and
continuous part M., with identity elements I, and Ipq,, respectively. For
a discrete summand M, (C) ® Leo(ptn) (here n > 2), let e, = Efy ® I1,_ (),
where E7y is the matrix unit in M,,(C) with the (1,1) entry being 1 and all
others 0. Let eg = ZnZQ én. Then C,, = CIMd—ed = I, For the continuous
part, we have a projection e, € M, such that e. and I, —e. are both unitarily
equivalent to Inq, . In particular, C., = Cr,, —e, = Ip,.. Consequently, e =
eq + €. finishes our task.

Finally, we verify the implication (b) = (c). Let e be a projection in
M such that C, = Cj_. = I. Let z be any abelian central projection in M.
Since

ze(u™ (1 —e)u)ez = zez(zuz)*(1 — e)uez = (zuz)*(zez)(1 —e)u =0

for any unitary u in M, and Cj_. = I, we see that ze = 0. Similarly, we see
that z(1 —e) = 0, and thus z = 0. It follows that M has no direct abelian
summand. O

2.2. Characterization of nuclearity

Nuclear C*-algebras play an important role in the study of operator algebras.
Analogously, nuclear TROs are also characterized in [17]. Our aim is to give
some new characterizations of nuclear TROs.

Recall that a C*-algebra A (resp. TRO V) is said to be nuclear (resp.
Lance nuclear) if for every C*-algebra B, there is a unique C*-algebra tensor
norm on A ® B (resp. a unique TRO tensor norm on V' ® B).

Proposition 2. IfV is a TRO in B(K, H) such that C(V) and D(V) are
nuclear, then A(V') is nuclear and V' is Lance nuclear.

Proof. There is a projection e in B(H & K) such that C(V) = eA(V)e and
D(V) = (I —e)A(V)(I —e). Hence C(V)*™* = eA(V)*™e and D(V )" =
(I —e)A(V)*™(I —e). Since C(V) and D(V') are nuclear, C(V)** and D(V)**
are hyperfinite. We have A(V)** is hyperfinite by [23, Lemma 2.8]. Hence
A(V) is nuclear, and therefore V' is Lance nuclear by [17, Theorem 6.1]. O

A TRO (respectively W*-TRO) V' C B(K, H) carries a natural operator
space structure ([8]; see also [21]) with matrix norms arising from identifying
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M, (V) with a TRO (respectively W*-TRO) in M, (B(K,H)) = B(K"™, H")
for n =1,2,.... In general, an operator space X is said to be injective if for
any operator spaces Wy C Ws, every complete contraction ¢ : W3 — X has a
completely contractive extension $ : W5 — X. On the other hand, X is said to
be 1-nuclear if the identity operator Ix on X can be factorized approximately
through matrix spaces M, (C) in the sense that Ix = lim, ¢, 0 9, in the
point-norm topology with completely bounded maps v, : X — M, (C) and
¢a : My, (C) — X such that ||¢a||eb||Valles < 1.

Arguing as in Proposition 2, we have a similar result held for W*-TROs.

Proposition 3. IfV is a W*-TRO such that M (V) and N(V') are injective
von Neumann algebras, then R(V') is an injective von Neumann algebra and
therefore V' is an injective TRO.

It follows from Proposition 2 the following characterization of nuclear
TROs, which adds condition (6) to the list in [17, Theorem 6.5]

Theorem 4. Let V be a TRO. The following are equivalent:

(1) V is Lance nuclear;

(2) V is 1-nuclear;

(3) V** is injective;

(4) A(V)*™ is injective;

(5) A(V) is nuclear;

(6) C(V) and D(V') are nuclear.

2.3. Characterization of exactness

Recall that a von Neumann algebra M is said to be weakly ezact ([19]) if for
any unital C*-algebra A with a closed two-sided ideal J and any left normal
s-representation 7 : M Quin A = B(H) with 7(M ®@ J) = 0, the induced
s-representation 7 : M ® (A/J) — B(H) is continuous with respect to the
minimum tensor norm.

Lemma 5 (]2, Corollary 14.1.15]). If M is a weakly exact von Neumann
algebra, then M®&B(H) is weakly exact.

Dong and Ruan studied the connection between weak* exact W*-TROs
and their linking von Neumann algebras in [4]. In view of [4, Theorem 3.3],
a dual operator space X is weak™ exact if for any operator space W and any
finite rank complete contraction ¢ : W — X, there exists a net of weak*
continuous finite rank complete contractions ¢, : W — V converging to ¢ in
the point-weak* topology.
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Proposition 6 ([4, Lemma 3.4]). Let M be a von Neumann algebra. Then
M is weak® exact if and only if M is weakly exact.

Lemma 7 ([4, Lemma 3.1]). Assume that Xy is a weak*-closed subspace of
a dual operator space X such that there exists a weak* continuous completely
contractive projection P : X — Xo. If X is weak* exact, so is Xg.

The following result connects the weak exactness of a von Neumann al-
gebras with its “diagonals”.

Lemma 8. Let M be a von Neumann algebra. Suppose {Q; : j € I} is
a family of mutually equivalent and mutually orthogonal projections in M
such that Q;MQ; is a weakly exact von Neumann algebra for each j and
Zjej Qj = 1. Then M is a weakly exact von Neumann algebra.

Proof. Fix an index jy in J. For any finite subset F' of J of n elements, we see
that

(3 er QM cp Qy) is isomorphic to (Qj, MQj) ® Mn(C).

But the latter von Neumann algebra is weakly exact by Lemma 5. Let Pp(x) =
(X jer Qi)x(3_ ep @j)- Then as F' runs over all finite subsets of J, we have
a net of normal completely positive contractions Pr : M — PrM Pr which
converges to the identity on M in the point ultraweak topology. It follows from
[2, Proposition 14.1.4] that M is a weakly exact von Neumann algebra. [

Lemma 9 ([5, Theorem 3.1]; see also [23, Lemma 2.7]). Let P be a projection
in a von Neumann algebra M. There is a family {Qu}a of subprojections of
P in M such that Cp =), Cq, is a sum of mutually orthogonal central pro-
jections. Moreover, each Cq, = Qo+ Y., Q% is a sum of mutually orthogonal
and mutually equivalent projections.

Proof. We sketch the proof in [5] for completeness. We first claim that for
any nonzero projection P in M there is a subprojection ) < P and a family
of mutually orthogonal projections (), ~ @ such that the central cover Cg =
Q + >, Qa. The assertion will follow from the claim and a Zorn’s Lemma
argument.

To prove the claim, we might assume Cp = I. Suppose M has type III.
There are subprojections P;, P, of P such that P = P+ P, and P, ~ P;.
Enlarge {P;, P,} to a maximal family P of mutually orthogonal projections
P, such that P, ~ P; for all indices o. If > P, = I, then we can let
Q@ = P and {Qa}a = P\ {P1}. Otherwise, 1 Z (1 — >, Fa) by the
maximality of PP. Hence there is a nonzero central projection E of M such
that E(1 — ZA# P\) < EP,. Then Q = EP; and ), = EP, for o # 1 will
do the job.
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If M is semifinite, there will be a nonzero central projection £ =)\ E,
written as an orthogonal sum of mutually equivalent finite projections El,.
Since Cp = I, we can replace P by EP # 0 and assume [ = £ =) _\ E,.
Letting Eog = Ej, be the partial isometry in M such that E, = EysE,;
and Eg = E}3Eq5, we get a family {Eop : a, 8 € A} of matrix units in M
with Eoq = Eq for each a in A. Then Ung = Eap + Ega + 3. 20 5 Eyy = Upa
is a self-adjoint unitary in M such that U.,gE, = Eg, Usgls = E, and
Ul = E, for v # o, 3.

If there is a nonzero central projection F'in M such that FE, = FP for
some (and thus all) a, then let ) < F'P such that Q ~ FE,. Since F'E, is a
finite projection, there is a unitary U in M such that ) = U*FE,U. Letting
Qp = U'FERU for all B # o in A, we have Cg = F' = Q + 35, Qp as
claimed.

If there is no such nonzero central projection F', then P < E, for all «
in A. In particular, P < U*E,U for some index « and a unitary U in M.
Replacing all Eg with U*EgU, we can assume U = I, and thus P is a projec-
tion in the finite von Neumann algebra E,MUE,. By [14, Proposition 8.2.1],
P contains a nonzero monic subprojection @); namely, there are mutually or-
thogonal subprojections Q1 = @, Qs ..., Qk of E,, each of them is equivalent
to @ such that E,CqoFE, = Q1 + - - - + Q. Consequently,

CQ = Z EﬁCQE@ = EQCQEQ + Z EﬁCQE@
B B
= (@t +Qr)+ D Uas(@Q1+ - + Qi)Uags.
B#a

Because each U,pQ;Uqs is equivalent to ), we establish the claim.
Since every von Neumann algebra is a direct sum of its semifinite sum-
mand and its type III summand, the claim is verified. O

Proposition 10. Let M be a von Neumann algebra and e € M a nonzero
projection with Ce = I. Then

M is weak-exact <= eMe is weak*-exact.

Proof. (=) It follows from Lemma 7 that if M is weak*-exact, then eMe
and (I —e)M(I — e) are weak*-exact. This is because the maps P(z) = exe
and Q(x) = (I — e)xz(I — e) are weak*-continuous completely contractive
projections from M onto eMe and (I — e)M(I — e), respectively.

(<) Assume that eMe is weak*-exact. By Lemma 9, there is a family
{Qq : a € I'} of mutually disjoint subprojections of e such that ) Cq, =1,
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and Cg, = Qa + > _; Q¢, where all !, are equivalent to @, for each a. By
Lemmas 6 and 7, we have Q, M@, is weakly exact for each o € I". It follows
from Lemma 8 that Cg, MCgq, is a weakly exact von Neumann algebra. Since
the direct sum of weakly exact von Neumann algebras is again weakly exact,
M =3 cr Co. M is a weakly exact von Neumann algebra. This completes
the proof. O

It follows from Proposition 10 that for a W*-TRO V, the linking W*-
algebra R(V') is weak™-exact if and only if M (V) or N(V) is a weakly exact
von Neumann algebra. The following result is immediate and it adds condition
(2) to the list in [4, Theorem 4.1].

Theorem 11. Let V be a W*-TRO. Then the following are equivalent.

(1) V is weak*-exact.

(2) M(V) and N(V) are weak* exact.
(2°) M(V') or N(V) is weak* ezact.
(3) R(V) is weak* exact.
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