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Abstract. Recently, two retractions (projections) which are different from

the metric projection and the sunny nonexpansive retraction in a Banach
space were found. In this paper, using nonlinear analytic methods and new
retractions, we prove a nonlinear ergodic theorem for a commutative family
of positively homogeneous and nonexpansive mappings in a uniformly convex

Banach space. The limit points are characterized by using new retractions.
In the proof, we use the theory of invariant means essentially. We apply our
nonlinear ergodic theorem to get some nonlinear ergodic theorems in Banach
spaces.

1. Introduction

Let E be a real Banach space and let C be a nonempty subset of E. Let T be
a mapping of C into C. Then we denote by F (T ) the set of fixed points of T . A
mapping T : C → C is called nonexpansive if ∥Tx−Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.
Let C be a closed convex cone of E. A mapping T : C → C is called positively
homogeneous if T (αx) = αT (x) for all x ∈ C and α ≥ 0. Baillon [2] proved the first
nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space.

Theorem 1.1 (Baillon [2]). Let H be a Hilbert space and let C be a nonempty,
closed and convex subset of H. Let T : C → C be a nonexpansive mapping with
F (T ) ̸= ∅. Then, for any x ∈ C, the Cesàro means

Snx =
1
n

n−1∑
k=0

T kx

converge weakly as n → ∞ to z ∈ F (T ).

Bruck [5] extended Baillon’s result to Banach spaces as follows:

Theorem 1.2 (Bruck [5]). Let E be a uniformly convex Banach space whose norm
is a Fréchet differentiable and let C be a nonempty, closed and convex subset of E.
Let T : C → C be a nonexpansive mapping with F (T ) ̸= ∅. Then, for any x ∈ C,
the Cesàro means Snx converge weakly as n → ∞ to z ∈ F (T ).

Hirano, Kido and Takahashi [10] extended Bruck’s theorem to commutative fam-
ilies of nonexpansive mappings. However, the limit points z ∈ F (T ) in 1.2 and [10]
are not characterized. Recently, Ibaraki and Takahashi [12] found a new nonlin-
ear projection called a sunny generalized nonexpansive retraction which is different
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from the metric projection, the sunny nonexpansive retraction and the generalized
projection in a Banach space. By using this retraction, Takahashi, Wong and Yao
[27] proved the following theorem.

Theorem 1.3. Let E be a uniformly convex and smooth Banach space. Let T :
E → E be a positively homogeneous nonexpansive mapping. Then for any x ∈ E,
the Cesàro means Snx converges weakly to z0 ∈ F (T ). Additionally, if the norm
of E is a Fréchet differentiable, then z0 = limn→∞ RF (T )T

nx, where RF (T ) is the
sunny generalized nonexpansive retraction of E onto F (T ).

In this paper, using nonlinear analytic methods and new retractions which were
found recently, we prove a nonlinear ergodic theorem for a commutative family of
positively homogeneous and nonexpansive mappings in a uniformly convex Banach
space. The limit points are characteralized by new retractions. In the proof, we use
the theory of invariant means essentially. We apply our nonlinear ergodic theorem
to get some nonlinear ergodic theorems in Banach spaces.

2. Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. For a sequence
{xn} of E and a point x ∈ E, the weak convergence of {xn} to x and the strong
convergence of {xn} to x are denoted by xn ⇀ x and xn → x, respectively. Let A
be a nonempty subset of E. We denote by coA the closure of the convex hull of A.
The duality mapping J from E into E∗ is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said
to be smooth if the limit

lim
t→0

∥x + ty∥ − ∥x∥
t

exists for all x, y ∈ S(E). The norm of E is said to be Fréchet differentiable if
for each x ∈ S(E), the limit is attained uniformly for y ∈ S(E). A Banach space
E is said to be strictly convex if ∥x+y

2 ∥ < 1 whenever x, y ∈ S(E) and x ̸= y. It
is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that
∥x+y

2 ∥ ≤ 1− δ whenever x, y ∈ S(E) and ∥x− y∥ ≥ ε. Furthermore, we know from
[24] that

(i) if E is smooth, then J is single-valued;
(ii) if E is reflexive, then J is onto;
(iii) if E is strictly convex, then J is one-to-one;
(iv) if E is strictly convex, then J is strictly monotone, i.e.,

⟨x − y, Jx − Jy⟩ > 0, ∀x, y ∈ E, x ̸= y;

(v) if E has a Fréchet differentiable norm, then J is norm-to-norm continuous.
Let E be a smooth Banach space and let J be the duality mapping on E.

Throughout this paper, let N and R be the sets of positive integers and real numbers,
respectively. Define the function ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2, ∀x, y ∈ E.

Observe that, in a Hilbert space H, ϕ(x, y) = ∥x − y∥2 for all x, y ∈ H. We also
know that for each x, y, z, w ∈ E,

(2.1) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥ + ∥y∥)2;
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(2.2) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x − z, Jz − Jy⟩;

(2.3) 2⟨x − y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z) − ϕ(x, z) − ϕ(y, w).

If E is additionally assumed to be strictly convex, then

(2.4) ϕ(x, y) = 0 if and only if x = y.

The following result was proved by Kamimura and Takahashi [18].

Lemma 2.1 (Kamimura and Takahashi [18]). Let E be a uniformly convex and
smooth Banach space and let {xn} and {yn} be sequences in E such that {xn} or
{yn} is bounded. If limn→∞ ϕ(xn, yn) = 0, then limn→∞ ∥xn − yn∥ = 0.

Let E be a Banach space and let C be a nonempty subset of E. A mapping
T : C → C is quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx− y∥ ≤ ∥x− y∥ for all x ∈ C
and y ∈ F (T ). We know the following result.

Lemma 2.2 (Itoh and Takahashi [17]). Let E be a strictly convex Banach space and
let C be a nonempty, closed and convex subset of E. Let T be a quasi-nonexpansive
mapping of C into itself. Then F (T ) is closed and convex.

Let E be a smooth Banach space and let C be a nonempty subset of E. A
mapping T : C → C is called generalized nonexpansive [12] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y), ∀x ∈ C, y ∈ F (T ).

Takahashi and Yao [29] obtained the following result by using the Hahn-Banach
theorem.

Lemma 2.3 (Takahashi and Yao [29]). Let E be a Banach space and let C be
a closed and convex cone of E. Let T : C → C be a positively homogeneous
nonexpansive mapping. Then, for any x ∈ C and m ∈ F (T ), there exists j ∈ Jm
such that

⟨x − Tx, j⟩ ≤ 0,

where J is the duality mapping of E into E∗.

Using Lemma 2.3, Takahashi and Yao [29] proved the following result.

Lemma 2.4 (Takahashi and Yao [29]). Let E be a smooth Banach space and let
C be a closed and convex cone of E. Let T : C → C be a positively homogeneous
nonexpansive mapping. Then, T is a generalized nonexpansive mapping.

Let D be a nonempty subset of a Banach space E. A mapping R : E → D is
said to be sunny if

R(Rx + t(x − Rx)) = Rx, ∀x ∈ E, t ≥ 0.

A mapping R : E → D is said to be a retraction or a projection if Rx = x for all
x ∈ D. A nonempty subset D of a smooth Banach space E is said to be a generalized
nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there
exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction) R from E onto D; see [11, 13, 12] for more details. The following results
are in Ibaraki and Takahashi [12].

Lemma 2.5 (Ibaraki and Takahashi [12]). Let C be a nonempty closed sunny
generalized nonexpansive retract of a smooth and strictly convex Banach space E.
Then the sunny generalized nonexpansive retraction from E onto C is uniquely
determined.
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Lemma 2.6 (Ibaraki and Takahashi [12]). Let C be a nonempty closed subset
of a smooth and strictly convex Banach space E such that there exists a sunny
generalized nonexpansive retraction R from E onto C and let (x, z) ∈ E ×C. Then
the following hold:

(i) z = Rx if and only if ⟨x − z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(ii) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [19] also proved the following results:

Lemma 2.7 (Kohsaka and Takahashi [19]). Let E be a smooth, strictly convex
and reflexive Banach space and let C be a nonempty closed subset of E. Then the
following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.8 (Kohsaka and Takahashi [19]). Let E be a smooth, strictly convex and
reflexive Banach space and let C be a nonempty closed sunny generalized nonex-
pansive retract of E. Let R be the sunny generalized nonexpansive retraction from
E onto C and let (x, z) ∈ E × C. Then the following are equivalent:

(i) z = Rx;
(ii) ϕ(x, z) = miny∈C ϕ(x, y).

Inthakon, Dhompongsa and Takahashi [16] obtained the following result con-
cerning the set of fixed points of a generalized nonexpansive mapping in a Banach
space; see also Ibaraki and Takahashi [14, 15].

Lemma 2.9 (Inthakon, Dhompongsa and Takahashi [16]). Let E be a smooth,
strictly convex and reflexive Banach space and let C be a closed subset of E such
that J(C) is closed and convex. Let T be a generalized nonexpansive mapping from
C into itself. Then, F (T ) is closed and JF (T ) is closed and convex.

The following is a direct consequence of Lemmas 2.7 and 2.9.

Lemma 2.10 (Inthakon, Dhompongsa and Takahashi [16]). Let E be a smooth,
strictly convex and reflexive Banach space and let C be a closed subset of E such
that J(C) is closed and convex. Let T be a generalized nonexpansive mapping from
C into itself. Then, F (T ) is a sunny generalized nonexpansive retract of E.

3. Semitopological Semigroups and Invariant Means

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a · s and s 7→ s · a from S to
S are continuous. In the case when S is commutative, we denote st by s + t. Let
B(S) be the Banach space of all bounded real valued functions on S with supremum
norm and let C(S) be the subspace of B(S) of all bounded real valued continuous
functions on S. Let µ be an element of C(S)∗ (the dual space of C(S)). We denote
by µ(f) the value of µ at f ∈ C(S). Sometimes, we denote by µt(f(t)) or µtf(t)
the value µ(f). For each s ∈ S and f ∈ C(S), we define two functions lsf and rsf
as follows:

(lsf)(t) = f(st) and (rs f )(t) = f (ts)
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for all t ∈ S. An element µ of C(S)∗ is called a mean on C(S) if µ(e) = ∥µ∥ = 1,
where e(s) = 1 for all s ∈ S. We know that µ ∈ C(S)∗ is a mean on C(S) if and
only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s), ∀f ∈ C(S).

A mean µ on C(S) is called left invariant if µ(lsf) = µ(f) for all f ∈ C(S) and
s ∈ S. Similarly, a mean µ on C(S) is called right invariant if µ(rsf) = µ(f) for all
f ∈ C(S) and s ∈ S. A left and right invariant invariant mean on C(S) is called
an invariant mean on C(S). The following theorem is in [24, Theorem 1.4.5].

Theorem 3.1 ([24]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there exists an element µ ∈ C(S)∗

such that µ(e) = ∥µ∥ = 1 and µ(rsf) = µ(f) for all f ∈ C(S) and s ∈ S.

Theorem 3.2 ([24]). Let S be a semitopological semigroup. Let µ be a right in-
variant mean on C(S). Then

sup
s

inf
t

f(ts) ≤ µ(f) ≤ inf
s

sup
t

f(ts), ∀f ∈ C(S).

Similarly, let µ be a left invariant mean on C(S). Then

sup
s

inf
t

f(st) ≤ µ(f) ≤ inf
s

sup
t

f(st), ∀f ∈ C(S).

Let S be a semitopological semigroup. For any f ∈ C(S) and c ∈ R, we write

f(s) → c, as s → ∞R

if for each ε > 0 there exists an ω ∈ S such that

|f(tw) − c| < ε, ∀t ∈ S.

We denote f(s) → c, as s → ∞R by

lim
s→∞R

f(s) = c.

When S is commutative, we also denote s → ∞R by s → ∞.

Theorem 3.3 ([24]). Let f ∈ C(S) and c ∈ R. If

f(s) → c, as s → ∞R,

then µ(f) = c for all right invariant mean µ on C(S).

Theorem 3.4 ([24]). If f ∈ C(S) fulfills

f(ts) ≤ f(s), ∀t, s ∈ S,

then
f(t) → inf

w∈S
f(w), as t → ∞R.

Theorem 3.5 ([24]). Let S be a commutative semitopological semigroup and let
f ∈ C(S). Then the following are equivalent:

(i) f(s) → c, as s → ∞;
(ii) supw inft f(t + w) = infw supt f(t + w) = c.
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Let E be a Banach space and let C be a nonempty, closed and convex subset
of E. Let S be a semitopological semigroup and let S = {Ts : s ∈ S} be a family
of nonexpansive mappings of C into itself. Then S = {Ts : s ∈ S} is called a
continuous representation of S as nonexpansive mappings on C if Tst = TsTt for
all s, t ∈ S and s 7→ Tsx is continuous for each x ∈ C. The following definition
[22] is crucial in the nonlinear ergodic theory of abstract semigroups. Let S be
a topological space and Let C(S) be the Banach space of all bounded real valued
continuous functions on S with supremum norm. Let E be a reflexive Banach space.
Let u : S → E be a continuous function such that {u(s) : s ∈ S} is bounded and
let µ be a mean on C(S). Then there exists a unique element z0 of E such that

µs⟨u(s), x∗⟩ = ⟨z0, x
∗⟩, ∀x∗ ∈ E∗.

We call such z0 the mean vector of u for µ and denote by τ(µ)u, i.e., τ(µ)u = z0. In
particular, if S = {Ts : s ∈ S} is a continuous representation of S as nonexpansive
mappings on C and u(s) = Tsx for all s ∈ S, then there exists z0 ∈ C such tat

µs⟨Tsx, x∗⟩ = ⟨z0, x
∗⟩, ∀x∗ ∈ E∗.

We denote such z0 by Tµx. The following result is in Hirano, Kido and Takahashi
[10].

Lemma 3.6. Let S be a commutative semitopological semigroup. Let E be a uni-
formly convex Banach space and let C be a nonempty, closed and convex subset
of E. Let S = {Ts : s ∈ S} be a continuous representation of S as nonexpansive
mappings on C. Let µ be an invariant mean on C(S). Then for any x ∈ C, the
mean vector Tµx of {Tsx : s ∈ S} for µ is in F (S).

The following lemma plays an important role for proving our main theorem.

Lemma 3.7. Let E be a smooth, strictly convex and reflexive Banach space and
let D be a nonempty, closed and convex subset of E. Let S be a semitopological
semigroup and let u : S → D be a continuous function such that {u(s) : s ∈ S} is
bounded. Let µ be a mean on C(S). If g : D → R is defined by

g(z) = µsϕ(u(s), z), ∀z ∈ D,

then the mean vector z0 = τ(µ)u of u for µ is a unique minimizer in D such that

g(z0) = min{g(z) : z ∈ D}.

Proof. For a continuous function u : S → D such that {u(s) : s ∈ S} is bounded
and a mean µ on C(S), we know that a function g : D → R defined by

g(z) = µsϕ(u(s), z), ∀z ∈ D

is well-defined. We also know that there exists the mean vector z0 = τ(µ)u of u for
µ, that is, there exists z0 ∈ co{u(s) : s ∈ S} such that

µs⟨u(s), y∗⟩ = ⟨z0, y
∗⟩, ∀y∗ ∈ E∗.
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Since D is closed and convex and {u(s) : s ∈ S} ⊂ D, we have z0 ∈ D. Furthermore
we have from (2.2) and (2.3) that for any z ∈ D,

g(z) − g(z0) = µsϕ(u(s), z) − µsϕ(u(s), z0)

= µs

(
ϕ(u(s), z) − ϕ(u(s), z0)

)
= µs

(
ϕ(u(s), z) − ϕ(u(s), z) − ϕ(z, z0) − 2⟨u(s) − z, Jz − Jz0⟩

)
= µs

(
− ϕ(z, z0) − 2⟨u(s) − z, Jz − Jz0⟩

)
= −ϕ(z, z0) − 2⟨z0 − z, Jz − Jz0⟩
= −ϕ(z, z0) − ϕ(z0, z0) − ϕ(z, z) + ϕ(z0, z) + ϕ(z, z0)

= ϕ(z0, z).

Then we have that

(3.1) g(z) = g(z0) + ϕ(z0, z), ∀z ∈ D.

This implies that z0 ∈ D is a minimizer in D such that g(z0) = min{g(z) : z ∈
D}. Furthermore, if v ∈ D satisfies g(v) = g(z0), then we have from (3.1) that
ϕ(z0, v) = 0. Since E is strictly convex, we have that z0 = v and hence z0 is a
unique minimizer in D such that

g(z0) = min{g(z) : z ∈ D}.
This completes the proof. ¤

4. Nonlinear Ergodic Theorem

In the section, we prove a nonlinear ergodic theorem for a commutative family of
positively homogeneous nonexpansive mappings in a Banach space. Before proving
it, we need the following two lemmas. Using Lemma 3.7, we can first obtain the
following result.

Lemma 4.1. Let S be a commutative semitopological semigroup. Let E be a uni-
formly convex and smooth Banach space and let S = {Ts : s ∈ S} be a continuous
representation of S as positively homogeneous nonexpansive mappings of E into
itself. Then for any x ∈ C, {Tsx : s ∈ S} is bounded and the set

∩s∈Sco{Tt+sx : t ∈ S} ∩ F (S)

consists of one point z0, where z0 is a unique minimizer of F (S) such that

lim
s→∞

ϕ(Tsx, z0) = min{ lim
s→∞

ϕ(Tsx, z) : z ∈ F (S)}.

Proof. For each s ∈ S, Ts : E → E is positively homogeneous and nonexpansive.
It follows from Lemma 2.4 that Ts is generalized nonexpansive. Thus we have that
for any z ∈ F (S) and x ∈ C,

ϕ(Tt+sx, z) ≤ ϕ(Tsx, z) ≤ · · · ≤ ϕ(x, z), ∀s, t ∈ S.

Then {Tsx : s ∈ S} is bounded. Let µ be an innvariant mean on C(S). From
Lemma 3.7, the mean vector z0 ∈ E of {Tsx} for µ is a unique minimizer z0 ∈ E
such that

µsϕ(Tsx, z0) = min{µsϕ(Tsx, y) : y ∈ E}.
We also know from Lemma 3.6 that z0 ∈ F (S). Furthermore, this z0 ∈ F (S)
satisfies that

µsϕ(Tsx, z0) = min{µsϕ(Tsx, y) : y ∈ F (S)}.
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Let us show that z0 ∈ ∩s∈Sco{Tt+sx : t ∈ S}. If not, there exists some s0 ∈ S such
that z0 /∈ co{Tt+s0x : t ∈ S}. By the separation theorem, there exists y∗

0 ∈ E∗ such
that

⟨z0, y
∗
0⟩ < inf

{
⟨z, y∗

0⟩ : z ∈ co{Tt+sx : t ∈ S}
}
.

Using the property of the invariant mean µ, we have that

⟨z0, y
∗
0⟩ < inf

{
⟨z, y∗

0⟩ : z ∈ co{Tt+s0x : t ∈ S}
}

≤ inf{⟨Tt+s0x, y∗
0⟩ : t ∈ S}

≤ µt⟨Tt+s0x, y∗
0⟩

= µt⟨Ttx, y∗
0⟩

= ⟨z0, y
∗
0⟩.

This is a contradiction. Thus we have that z0 ∈ ∩s∈Sco{Tt+sx : t ∈ S}. Next we
show that ∩s∈Sco{Tt+sx : t ∈ S} ∩ F (S) consists of one point z0. Assume that
z1 ∈ ∩s∈Sco{Tt+sx : t ∈ S} ∩ F (S). Since z1 ∈ F (S), we have that

ϕ(Tt+sx, z1) ≤ ϕ(Tsx, z1), ∀t, s ∈ S.

Then lims ϕ(Tsx, z1) exists. Furthermore, we know from the property of an invariant
mean µ (Theorem 3.3) that

µtϕ(Ttx, z1) = lim
t→∞

ϕ(Ttx, z1).

In general, since limt ϕ(Ttx, z) exists for every z ∈ F (S), we define a function
g : F (S) → R as follows:

g(z) = lim
t→∞

ϕ(Ttx, z), ∀z ∈ F (S).

Since
ϕ(z0, z1) = ϕ(Ttx, z1) − ϕ(Ttx, z0) − 2⟨Ttx − z0, Jz0 − Jz1⟩

for every t ∈ S, we have

ϕ(z0, z1) + 2 lim
t→∞

⟨Ttx − z0, Jz0 − Jz1⟩

= lim
t→∞

ϕ(Ttx, z1) − lim
t→∞

ϕ(Ttx, z0)

≥ 0.

Let ϵ > 0. Then we have that

2 lim
t→∞

⟨Ttx − z0, Jz0 − Jz1⟩ > −ϕ(z0, z1) − ϵ.

Hence there exists s0 ∈ N such that

2⟨Tt+s0x − z0, Jz0 − Jz1⟩ > −ϕ(z0, z1) − ϵ

for every t ∈ S. Since z1 ∈ ∩sco{Tt+sx : t ∈ S} ⊂ co{Tt+s0x : t ∈ S}, we have

2⟨z1 − z0, Jz0 − Jz1⟩ ≥ −ϕ(z0, z1) − ϵ.

We have from (2.3) that

ϕ(z1, z1) + ϕ(z0, z0) − ϕ(z1, z0) − ϕ(z0, z1) ≥ −ϕ(z0, z1) − ϵ

and hence ϕ(z1, z0) ≤ ϵ. Since ϵ > 0 is arbitrary, we have ϕ(z1, z0) = 0. Since E is
strictly convex, we have z0 = z1. Therefore

{z0} = ∩sco{Tt+sx : t ∈ S} ∩ F (S).

This completes the proof. ¤
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For proving our main theorem (Theorem 4.3), we also need the following lemma.

Lemma 4.2. Let S be a commutative semitopological semigroup. Let E be a uni-
formly convex and smooth Banach space and let S = {Ts : s ∈ S} be a continuous
representation of S as positively homogeneous nonexpansive mappings of E into
itself. Then, there exists a unique sunny generalized nonexpansive retraction R of
E onto F (S). Furthermore, for any x ∈ E, lims→∞ RTsx exists in F (S), where
lims→∞ RTsx = q means lims→∞ ∥RTsx − q∥ = 0.

Proof. We have from Lemma 2.2 that F (S) is closed and convex. Furthermore, we
have from Lemma 2.9 that JF (S) are closed and convex. Then from Lemmas 2.5,
2.7 and 2.10 , there exists a unique sunny generalized nonexpansive retraction R of
E onto F (S). For an invariant mean µ on C(S), there exists q ∈ F (S) such that

µt⟨RTtx, x∗⟩ = ⟨q, x∗⟩, ∀x∗ ∈ E∗.

Then we have that

µt⟨RTt+sx, x∗⟩ = µt⟨RTtx, x∗⟩ = ⟨q, x∗⟩, ∀x∗ ∈ E∗.

Thus we have that

(4.1) q ∈ co{RTt+sx : t ∈ S}, ∀s ∈ S.

From Lemma 2.6, we know that

(4.2) 0 ≤ ⟨v − Rv, JRv − Ju⟩, ∀v ∈ E, u ∈ F (S).

We have from (4.2) and (2.3) that

0 ≤ 2⟨v − Rv, JRv − Ju⟩
= ϕ(v, u) + ϕ(Rv,Rv) − ϕ(v,Rv) − ϕ(Rv, u)

= ϕ(v, u) − ϕ(v,Rv) − ϕ(Rv, u).

Hence we have that

(4.3) ϕ(Rv, u) ≤ ϕ(v, u) − ϕ(v,Rv), ∀v ∈ E, u ∈ F (S).

Since ϕ(Tsz, u) ≤ ϕ(z, u) for all s ∈ S, u ∈ F (S) and z ∈ E, it follows from Lemma
2.8 that

(4.4) ϕ(Tt+sx,RTt+sx) ≤ ϕ(Tt+sx, RTsx) ≤ ϕ(Tsx,RTsx).

Hence we have from (4.4) and Theorem 3.4 that

(4.5) ϕ(Tsx,RTsx) → inf
w∈S

ϕ(Twx,RTwx), as s → ∞.

Putting u = RTsx and v = Tt+sx in (4.3), we have that

ϕ(RTt+sx,RTsx) ≤ ϕ(Tt+sx, RTsx) − ϕ(Tt+sx,RTt+sx)

≤ ϕ(Tsx,RTsx) − ϕ(Tt+sx,RTt+sx)

≤ ϕ(Tsx,RTsx) − inf
w∈S

ϕ(Twx,RTwx).

Using (4.1), we have that

ϕ(q,RTsx) ≤ ϕ(Tsx,RTsx) − inf
w∈S

ϕ(Twx,RTwx), ∀s ∈ S.

Thus we have from (4.5) and Lemma 2.1 that

∥RTsx − q∥ → 0, as s → ∞.

Therefore {RTsx} converges strongly to q ∈ F (S). This completes the proof. ¤
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Let S be a semitopological semigroup and let {µα} be a net of means on C(S).
Then {µα} is said to be asymptotically invariant if for each f ∈ C(S) and s ∈ S,

µα(f) − µα(lsf) → 0 and µα(f ) − µα(rs f ) → 0.

Theorem 4.3. Let S be a commutative semitopological semigroup. Let E be a
uniformly convex and smooth Banach space and let S = {Ts : s ∈ S} be a continuous
representation of S as positively homogeneous nonexpansive mappings of E into
itself. If a net {µα} of means on C(S) is asymptotically invariant. Then for any
x ∈ C, {Tµαx} converges weakly to z0 ∈ F (S). Additionally, if the norm of E
is a Fréchet differentiable, then lims RF (S)Tsx = z0, where RF (S) is the sunny
generalized nonexpansive retraction of E onto F (S).

Proof. Since {µα} is a net of means on C(S), it has a cluster point µ in the weak∗

topology. We show that µ is an invariant mean on C(S). In fact, since the set

{λ ∈ C(S)∗ : λ(e) = ∥λ∥ = 1}
is closed in the weak∗ topology, it follows that µ is a mean on C(S). Furthermore,
any ε > 0, f ∈ C(S) and s ∈ S, there exists α0 such that

|µα(f) − µα(lsf)| ≤ ε

3
, ∀α ≥ α0.

Since µ is a cluster point of {µα}, we can choose β ≥ α0 such that

|µβ(f) − µ(f)| ≤ ε

3
and |µβ(ls f ) − µ(ls f )| ≤ ε

3
.

Hence we have

|µ(f) − µ(lsf)| ≤ |µ(f) − µβ(f)|
+ |µβ(f) − µβ(lsf)| + |µβ(lsf) − µ(lsf)|

≤ ε

3
+

ε

3
+

ε

3
= ε.

Since ε > 0 is arbitrary, we have

µ(f) = µ(lsf), ∀f ∈ C(S), s ∈ S.

Let x ∈ E and define D = {z ∈ E : ∥z∥ ≤ ∥x∥}. Then D is nonempty, bounded,
closed and convex. Furthermore, since Ts is nonexpansive for each s ∈ S and
0 ∈ F (S), D is invariant under Ts and hence {Tsx : s ∈ S} and {Tµαx} are in D.
We show that {Tµαx} converges weakly to z0 ∈ F (S). Since {Tµαx} is a bounded
net in D, there exists a subnet {Tµαβ

x} of {Tµαx} converges weakly to some z ∈ D.
If λ is a cluster point of {µαβ

} in the weak∗ topology, then λ is a cluster point of
{µα}, too. Then λ is an invariant mean on C(S). Without loss of generality, we
have from {Tµαβ

x} ⇀ z that

λs⟨Tsx, y∗⟩ = lim
β

(µαβ
)s⟨Tsx, y+⟩ = lim

β
⟨Tµαβ

x, y+⟩ = ⟨z, y∗⟩, ∀y∗ ∈ E∗.

Since λ is an invariant mean on C(S), we have

z = Tλx ∈ ∩s∈Sco{Tt+sx : t ∈ S} ∩ F (S).

We know from Lemma 4.1 that the set

∩sco{Tt+sx : t ∈ S} ∩ F (S)

consists of one point z0. Therefore {Tµαx} converges weakly to z0 ∈ F (S).
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Additionally, assume that the norm of E is a Fréchet differentiable. We have
from Lemma 4.2 that there exists the sunny generalized nonexpansive retraction
R = RF (S) of E onto F (S) and {RTsx} converges strongly to a point q ∈ F (S).
Rewriting the characterization of the retraction R, we have that

0 ≤ ⟨Ttx − RTtx, JRTtx − Ju⟩ , ∀u ∈ F (S)

and hence

⟨Ttx − RTtx, Ju − Jq⟩ ≤ ⟨Ttx − RTtx, JRTtx − Jq⟩
≤ ∥Ttx − RTtx∥ · ∥JRTtx − Jq∥
≤ K∥JRTtx − Jq∥,

where K is an upper bound for ∥Ttx − RTtx∥. Remembering that J is continuous
because the norm of E is a Fréchet differentiable, we apply an invariant mean µ to
both sides of this inequality. Then we have that

⟨z0 − q, Ju − Jq⟩ ≤ 0.

This holds for any u ∈ F (S). Putting u = z0, we have ⟨z0 − q, Jz0 − Jq⟩ ≤ 0. Since
J is monotone, we have ⟨z0 − q, Jz0 − Jq⟩ = 0. Since E is strictly convex, we have
z0 = q. Thus z0 = lims→∞ RF (S)Tsx. ¤

Compare Theorem 4.3 with that of [10]. Though the assumption of a mapping
in Theorem 4.3 is stronger than that of [10], the assumption of a Banach space
is weaker. Furthermore, the limit points are characterized by sunny generalized
nonexpansive retractions.

5. Applications

In this section, we apply Theorem 4.3 to get some nonlinear ergodic theorems in
Banach spaces which are related to positively homogeneous nonexpansive mappings.
The following theorem was proved by Takahashi, Wong and Yao [27].

Theorem 5.1 (Takahashi, Wong and Yao [27]). Let E be a uniformly convex and
smooth Banach space. Let T : E → E be a positively homogeneous nonexpansive
mapping. Then for any x ∈ E,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to z0 ∈ F (T ). Additionally, if the norm of E is a Fréchet dif-
ferentiable, then z0 = limn→∞ RF (T )T

nx, where RF (T ) is the sunny generalized
nonexpansive retraction of E onto F (T ).

Proof. Let S = {0} ∪ N. For any f = (x0, x1, x2, . . . ) ∈ B(S), define

µn(f) =
1
n

n−1∑
k=0

xk, ∀n ∈ N.

Then {µn : n ∈ N} is an asymptotically invariant sequence of means on B(S); see
[24, p.78]. Furthermore, we have that for any x ∈ E and n ∈ N,

Tµnx =
1
n

n−1∑
k=0

T kx.
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Therefore, we have the desired result from Theorem 4.3. ¤

Theorem 5.2. Let E be a uniformly convex and smooth Banach space and let
T : E → E be a positively homogeneous nonexpansive mapping. Then for any
x ∈ E,

Srx = (1 − r)
∞∑

k=0

rkT kx

converges weakly to z0 ∈ F (T ) as r → 1 with 0 < r < 1. Additionally, if the norm
of E is a Fréchet differentiable, then z0 = limn→∞ RF (T )T

nx, where RF (T ) is the
sunny generalized nonexpansive retraction of E onto F (T ).

Proof. Let S = {0} ∪ N. For any f = (x0, x1, x2, . . . ) ∈ B(S) and r ∈ R with
0 < r < 1, define

µr(f) = (1 − r)
∞∑

k=0

rkxk, ∀r ∈ (0, 1).

Then {µr : r ∈ (0, 1)} is an asymptotically invariant net of means on B(S); see [24,
p.79]. Furthermore, we have that for any x ∈ E and r ∈ (0, 1),

Tµrx = (1 − r)
∞∑

k=0

rkT kx.

Therefore, we have the desired result from Theorem 4.3. ¤

Let S = R+ = {t ∈ R : 0 ≤ t < ∞}. Then a family S = {S(t) : t ∈ R+} of
mappings of E into itself is called a positively homogeneous nonexpansive semigroup
on E if S satisfies the following:

(1) S(t + s)x = S(t)S(s)x, ∀x ∈ E, t, s ∈ R+;
(2) S(0)x = x, ∀x ∈ E;
(3) for each x ∈ E, the mapping t 7→ S(t)x from R+ into E is continuous;
(2) for each t ∈ R+, S(t) is positively homogeneous and nonexpansive.

Theorem 5.3. Let E be a uniformly convex and smooth Banach space and let
S = {S(t) : t ∈ R+} be a positively homogeneous nonexpansive semigroup on E.
Then for any x ∈ E,

Sλx =
1
λ

∫ λ

0

S(t)xdt

converges weakly to z0 ∈ F (S) as λ → ∞. Additionally, if the norm of E is a
Fréchet differentiable, then z0 = limt→∞ RF (S)S(t)x, where RF (S) is the sunny
generalized nonexpansive retraction of E onto F (S).

Proof. Let S = R+. For any f ∈ C(R+), define

µλ(f) =
1
λ

∫ λ

0

f(t)dt, ∀λ ∈ (0,∞).

Then {µλ : λ ∈ (0,∞)} is an asymptotically invariant net of means on C(R+); see
[24, p.80]. Furthermore, we have that for any x ∈ E and λ ∈ (0,∞),

Tµλ
x =

1
λ

∫ λ

0

S(t)xdt.

Therefore, we have the desired result from Theorem 4.3. ¤
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Theorem 5.4. Let E be a uniformly convex and smooth Banach space and let
S = {S(t) : t ∈ R+} be a positively homogeneous nonexpansive semigroup on E.
Then for any x ∈ E,

r

∫ ∞

0

e−rtS(t)xdt

converges weakly to z0 ∈ F (S) as r → 0 with 0 < r < ∞. Additionally, if the norm
of E is a Fréchet differentiable, then z0 = limt→∞ RF (S)S(t)x, where RF (S) is the
sunny generalized nonexpansive retraction of E onto F (S).

Proof. Let S = R+. For any f ∈ C(R+), define

µr(f) = r

∫ ∞

0

e−rtf(t)dt, ∀r ∈ (0,∞).

Then {µr : r ∈ (0,∞)} is an asymptotically invariant net of means on C(R+); see
[24, p.82]. Furthermore, we have that for any x ∈ E and r ∈ (0,∞),

Tµrx = r

∫ ∞

0

e−rtS(t)xdt.

Therefore, we have the desired result from Theorem 4.3. ¤

Theorem 5.5. Let E be a uniformly convex and smooth Banach space and let
S, T : E → E be positively homogeneous nonexpansive mappings with ST = TS.
Then for any x ∈ E,

1
n2

n−1∑
i,j=0

SiT jx

converges weakly to z0 ∈ F (S)∩F (T ) as n → ∞. Additionally, if the norm of E is
a Fréchet differentiable, then z0 = limi,j→∞ RF (S)∩F (T )S

iT jx, where RF (S)∩F (T )

is the sunny generalized nonexpansive retraction of E onto F (S) ∩ F (T ).

Proof. Let S = {0, 1, 2, . . . }× {0, 1, 2, . . . } and let S = {SiT j : (i, j) ∈ S}. For any
f ∈ B(S), define

µn(f) =
1
n2

n−1∑
i,j=0

f(i, j), ∀n ∈ N.

Then {µn : n ∈ N} is an asymptotically invariant sequence of means on B(S); see
[24, p.83]. Furthermore, we have that for any x ∈ E and n ∈ N,

Tµnx =
1
n2

n−1∑
i,j=0

SiT jx.

Therefore, we have the desired result from Theorem 4.3. ¤
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