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Abstract. Enlightened by the notion of perturbation of C∗-algebras, we introduce and
study briefly in this article, a notion of closeness of groups. We show that if two groups
are “close enough” to each other, and one of them has the property that the orders of its
elements have a uniform finite upper bound, then the two groups are isomorphic (but
in general they are not). We also study groups that are close to abelian groups, as well
as an equivalence relation induced by closeness.

1. Introduction

In 1972, Kadison and Kastler introduced in [2] the notion of “perturbation of C∗-
algebras”, and they asked what kind of properties will be preserved if A is close enough
to B in this sense. Many people followed this question and produced a lot of interesting
results in C∗-algebras (see [1] and the references there in).

Using this idea, one can define a notion of closeness among (discrete) groups. We will
give a brief study of this notion in this article. More precisely, we say that a group G is
δ-contained in another group H if there are injective unitary representations of them on
the same Hilbert space such that the image of G is contained in the image of H up to a
distance of δ.

We obtained several results in this direction. In particular, let H be an “k-bounded”
group for some k ≥ 2 (i.e., the orders of all elements in H are bounded by k) and
δ ∈ (0, 1

2
sin π

k
), then any group G that is δ-contained in H is isomorphic to a subgroup

of H (see Theorem 3.4). We will also study those groups that are arbitrarily close to
abelian groups. Furthermore, using this notion of closeness, one can define an equivalence
relation on different classes of groups, and we will consider certain interesting classes in
this article.

2. Definitions and basic facts

Notation 2.1. Throughout this article, G and H are groups, and Rinj(G) and Rinj(H) are
the collections of all injective unitary representations of G and H, respectively. Moreover,
if H is a Hilbert space, then L(H) is the C∗-algebra of all bounded linear operators on
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H, while U(H) is the unitary group of L(H). For any normed space E, we denote by BE

the closed unit ball of E.

Let us begin with the precise definition of closeness.

Definition 2.2. (a) G is said to be δ-contained in (respectively, δ-close to) H if there
exist (H, ϕ) ∈ Rinj(G) and (H, ψ) ∈ Rinj(H) such that

ϕ(G) ⊆ ψ(H) + δBL(H)

(respectively,

ϕ(G) ⊆ ψ(H) + δBL(H) and ψ(H) ⊆ ϕ(G) + δBL(H)).

(b) G is said to be asymptotically contained in (respectively, asymptotically close to) H
if it is δ-contained in (respectively, δ-close to) H for each δ > 0.

Parts (b) - (d) of the following example tell us that groups which are asymptotically
close to each other can have very different properties.

Example 2.3. (a) Z2 is not δ-contained in Z3 if 0 < δ < 2 −
√
3. In fact, if H is a

Hilbert space and u, v ∈ U(H) \ {1} with u2 = 1 and v3 = 1, then ∥1 − u∥ = 2 and
∥1− v∥ =

√
3. Thus, ∥u− v∥ ≥ ∥1− u∥ − ∥1− v∥ ≥ 2−

√
3.

(b) Let t ∈ (0, 1) be an irrational number. Then θ : n 7→ e2ntπi is an injective group ho-
momorphism from Z into T := U(C) (= {z ∈ C : |z| = 1}) with dense range. Therefore,
T and Z are asymptotically close to each other. Note that Z is countable but T is not.

(c) Let n1, n2, ... be a sequence of relatively prime numbers. By considering the canonical
injective representation from

⊕
k∈N Znk

into T (sending (k̄j)j∈N to Π∞
j=1e

2kjπi/nj), we see
that

⊕
k∈N Znk

is asymptotically contained in Z. In the case when {p1, p2, ...} is the set of
all prime numbers, the image of

⊕
k∈N Zpk is dense in T. This means that

⊕
k∈N Zpk is

asymptotically close to Z. Note that Z have a single generator but the minimal number
of generators of

⊕
k∈N Zpk is infinite.

(d) Let D := lim−→ Z2k and T := lim−→ Z3k . Then both of them can be considered as dense

subgroups of T and hence they are asymptotically close to each other. Note that all
elements in both D and T are of finite order, but the order of any element in D is a
power of 2 while the order of any element in T is a power of 3.

The following result gives a connection between closeness of groups and the notion of
perturbation of Banach algebras in the sense of Kadison and Kastler [2].

Proposition 2.4. If (H, ϕ) ∈ Rinj(G) and (H, ψ) ∈ Rinj(H) satisfying ϕ(G) ⊆ ψ(H) +

δBL(H), then ϕ̃(Bℓ1(G)) ⊆ ψ̃(Bℓ1(H)) + 2δBL(H) (where ϕ̃ and ψ̃ are the induced represen-
tations).



3

Proof: For every r ∈ G, we take θ(r) ∈ H with ∥ϕ(r)−ψ(θ(r))∥ < δ. If f ∈ Bℓ1(G), for
each u ∈ H, we set g(u) := 0 if θ−1(u) = ∅ and g(u) :=

∑
r∈θ−1(u) f(r) otherwise. Then∑

u∈H |g(u)| ≤
∑

r∈G |f(r)| ≤ 1. As g ∈ Bℓ1(H) and∥∥∥ϕ̃(f)− ψ̃(g)
∥∥∥ =

∥∥∥∥∥∑
t∈G

f(t)(ϕ(t)− ψ(θ(t)))

∥∥∥∥∥ ≤ δ,

we obtain the required inclusion. �

3. The main results

We say that a group H is k-bounded for some integer k ≥ 2 if the order o(t) < k for
each t ∈ H. The following observations are useful in our study.

Lemma 3.1. (a) Let u be a unitary in a C∗-algebra and Gu be the subgroup of T generated
by its spectrum σ(u). Then the order, o(Gu), of Gu equals the order, o(u), of u.

(b) For each pair of positive integers (N,m), there is a strictly positive constant κN,m

such that for any Hilbert space H and u ∈ U(H) with o(u) = m, if v ∈ U(H) satisfying
o(v) ≤ N and ∥u− v∥ < κN,m, then o(v) divides m.

(c) Suppose that H is a k-bounded group. For any (ψ,H) ∈ Rinj(H) and any two distinct
elements r, s ∈ H, one has ∥ψ(r)− ψ(s)∥ ≥ 2 sin π

k
.

Proof: (a) This statement can be obtained easily by considering the C*-subalgebra,

C∗(u), generated by u as well as the fact that C∗(u) ∼= C(σ(u)).

(b) Let Gk be the collection of all generating subsets of Tk := {z ∈ T : zk = 1} (k ∈ N),
and QN,m := {n ∈ N : n ≤ N ;n - m}. If QN,m = ∅, then we can set κN,m := 1.
Otherwise, for any n ∈ QN,m and S ∈ Gn, we set

κS := max
s∈S

min
{∣∣e 2lπi

m − s
∣∣ : l = 1, ...,m

}
.

Note that κS > 0 as S * Tm. Define

κN,m := min{κS : S ∈ Gn;n ∈ QN,m} > 0.

Suppose on the contrary that ∥u − v∥ < δ < κN,m but o(v) ∈ QN,m. Then δ < κσ(v)

because σ(v) ∈ Go(v) by part (a). This implies that

σ(v) * Tm + δBC.(3.1)

On the other hand, observe that if λ /∈ σ(u) + δBC, then

∥(λ− u)−1∥ = sup{|λ− µ|−1 : µ ∈ σ(u)} ≤ δ−1.

This implies that ∥(λ− v)− (λ− u)∥ < δ < ∥(λ− u)−1∥−1 and λ /∈ σ(v). Therefore, we
have σ(v) ⊆ σ(u) + δBC. This contradicts (3.1) because σ(u) ⊆ Tm (by part (a)).
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(c) The assertion follows from the following inequalities.

(3.2) ∥ψ(r)− ψ(s)∥ = rσ(1− ψ(r−1s)) ≥
∣∣1− e2πi/o(r

−1s)
∣∣ ≥ 2 sin(π/k),

where rσ(·) stands for the spectral radius. �

Remark 3.2. (a) Let n ̸= m and u, v ∈ U(H) with o(u) = m and o(v) = n. It follows
from Lemma 3.1(b) that ∥u − v∥ ≥ min{κn,m, κm,n} > 0. This generalises the situation
in Example 2.3(a).

(b) By Example 2.3(d), one has infN∈N κN,3 = 0. Similarly, for anym ∈ N, by considering
lim−→ Zmk and lim−→ Zpk with p being a prime number not dividing m, one can show that

infN∈N κN,m = 0.

Example 3.3. For each integer k ≥ 2, pick any δ ∈ R+ \ {0} with

δ < min{κN,m : N,m = 1, 2, . . . , k} and δ < sin(π/k).

If G and H are two abelian groups with order less than k, which are δ-close to each other,
then G and H are isomorphic.

In fact, let (ϕ,H) ∈ Rinj(G) and (ψ,H) ∈ Rinj(H) be as in Definition 2.2. Then
Lemma 3.1(c) gives a bijection θ from G onto H such that ∥ϕ(r)−ψ(θ(r))∥ < δ (r ∈ G).
Furthermore, Lemma 3.1(b) shows that θ preserves orders of elements. Now suppose
that the common order of G and H is n = pr11 · · · prkk , where p1, . . . , pk are distinct prime
numbers and r1, . . . , rk ∈ N. Then we can write G and H as direct sums of their Sylow
subgroups

G = G(p1)⊕ · · · ⊕G(pk) and H = H(p1)⊕ · · · ⊕H(pk).

Since θ preserves the order of every element, we see that θ maps bijectively from the
Sylow pi-subgroup G(pi) onto the Sylow pi-subgroup H(pi) (i = 1, ..., k). Thus, one can
assume that n = pr.

In this case, G =
⊕i

k=1 Zpmk and H =
⊕j

l=1 Zpnl , where m1 ≤ ... ≤ mi and n1 ≤ ... ≤
nj. It is clear that mi = nj. Let G0 :=

⊕i−1
k=1 Zpmk and H0 :=

⊕j−1
l=1 Zpnl . Suppose that

OΓ(m) is the number of order m elements in a group Γ (m ∈ N). If (x, y) ∈ G0 ⊕ Zpmi

and l ∈ N, then o(x, y) = pl if and only if either o(x) = pl and o(y) ≤ pl, or o(x) < pl

and o(y) = pl. This shows that

OG(p) = OG0(p)p+ (p− 1)

as well as

OG(p
l) = OG0(p

l)pl + (1 + ...+OG0(p
l−1))(pl − pl−1) (l = 2, 3, ...,mi),

and similar equations hold for OH and OH0. Since OG = OH , we know that OG0 = OH0,
which gives mi−1 = nj−1. Inductively, one has i = j and mk = nk (k = 1, ..., i).
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Recall that the spectrum of a finite group G is the set ω(G) := {o(g) : g ∈ G}, where
o(g) is the order of g. The problem of determining finite simple groups by their spectra
was initiated in [3] and studied by many people. One may regard the function OG in
the above example as the extended spectrum of G (notice that n ∈ ω(G) if and only if
OG(n) ̸= 0). The argument of Example 3.3 tells us that two asymptotically close finite
groups will have the same extended spectrums. Moreover, the argument in this example
also shows that the extended spectrum of a finite abelian group determines the group
completely (which is likely a known fact). We do not know if the extended spectrum is a
complete invariant for all finite groups. However, we will see in Theorem 3.4 below that if
two finite groups are asymptotically close to each other, then they are indeed isomorphic.

3.1. Asymptotic containment in groups of bounded order.

Motivated by Example 3.3, our first task is to consider in what situation closeness of
groups will give rise to isomorphisms. The best situation we can think of is the following
result (note that Example 2.3(d) tells us that the conclusion of this result can be false if
one only assumes that every element in H has a finite order).

Theorem 3.4. Suppose that k ∈ {2, 3, 4, ...}, and G and H are two groups such that H
is k-bounded. Take any δ ∈ (0, 1

2
sin π

k
).

(a) If G is δ-contained in H, then G is isomorphic to a subgroup of H.

(b) If G is δ-close to H, then they are isomorphic.

Proof: (a) Let (H, ϕ, ψ) be as in Definition 2.2. If u, v ∈ ψ(H) are distinct elements,
we have ∥u − v∥ ≥ 2 sin π

k
(by Lemma 3.1(c)). Thus, if r ∈ G, there exists exactly one

θ(r) ∈ H with ∥ϕ(r)− ψ(θ(r))∥ < δ. Since

∥ϕ(r−1)− ψ(θ(r)−1)∥ = ∥ψ(θ(r))− ϕ(r)∥ < δ < sin(π/k),

we see that θ(r−1) = θ(r)−1. Moreover, if r1, r2 ∈ G, we have

∥ϕ(r1r2)− ψ(θ(r1)θ(r2))∥
≤ ∥ϕ(r1)ϕ(r2)− ϕ(r1)ψ(θ(r2))∥+ ∥ϕ(r1)ψ(θ(r2))− ψ(θ(r1))ψ(θ(r2))∥ < sin(π/k).

This implies that θ(r1r2) = θ(r1)θ(r2). Therefore, θ is a group homomorphism. Finally,
suppose on the contrary that θ is not injective. By the construction of θ, we have

ϕ(ker θ) ⊆ 1 + δBL(H).

Therefore, σ(ϕ(s)) ⊆ 1+ 1/2BC for every s ∈ ker θ. Now, if we take any s0 ∈ ker θ \ {e},
then there always exists n ∈ N with σ(ϕ(s0)

n) * 1 + 1/2BC (by considering the C∗-
subalgebra generated by the non-trivial unitary ϕ(s0)), which is a contradiction (because
sn0 ∈ ker θ).

(b) Let (H, ϕ, ψ) be as in Definition 2.2. As in the above, one can construct an injective
homomorphism θ : G → H. To see that θ is also surjective, let v ∈ H. By assumption,
there exists t ∈ G with ∥ψ(v) − ϕ(t)∥ < δ. Thus, ∥ψ(v) − ψ(θ(t))∥ < sin π

k
, and the
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inequality (3.2) ensures that v = θ(t). �

One may also reformulate Theorem 3.4 as follows.

Corollary 3.5. For any integer k ≥ 2, there exists r > 0 such that if H is a Hilbert
space and H is a k-bounded subgroup of U(H), then any subgroup G ⊆ U(H) satisfying
G ⊆ H + rBL(H) is a subgroup of H.

3.2. Asymptotic containment in abelian groups.

Next, we would like to consider when a group is asymptotically contained in an abelian
group. A natural question is whether such a group should be abelian. For the moment,
we only know that it is the case when every element in G is of finite order (or when H is
k-bounded for some k ∈ N). Nevertheless, we find some properties of such groups which
are interesting by themselves. Notice that the trivial group {e} is 2-bounded.

Definition 3.6. (a) A subset E ⊆ G is said to be asymptotically included in another
subset F ⊆ G if for any δ > 0, there is (H, ϕ) ∈ Rinj(G) with ϕ(E) ⊆ ϕ(F ) + δBL(H).

(b) G is said to be asymptotically abelian if the set CG := {s−1r−1sr : r, s ∈ G} of
commutators is asymptotically included in {e}.
(c) G is said to be pairwise asymptotically abelian if the subset {s−1r−1sr} asymptotically
included in the subset {e} for every r, s ∈ G.

Clearly, G is asymptotically abelian if and only if for each ϵ > 0, there is (H, ϕ) ∈
Rinj(G) such that ∥ϕ(rs)− ϕ(sr)∥ < ϵ (r, s ∈ G). Moreover, if we set

NG := {s ∈ G : {s} is asymptotically included in {e}},
then G being pairwise asymptotically abelian is equivalent to CG ⊆ NG.

Lemma 3.7. If r, s ∈ G both have finite orders and {r} is asymptotically included in
{s}, then o(r) = o(s). Consequently, any non-trivial element in NG is of infinite order.

Proof: This follows from Remark 3.2(a). �

It follows from Proposition 3.8(b) below that the above can fail if only one of the
elements is assumed to have finite order. This proposition also tells us that NG can be
very big even when G is abelian.

Proposition 3.8. (a) If every element in G has a finite order and G is pairwise asymp-
totically abelian, then G is abelian.

(b) If G is a finitely generated infinite abelian group, then NG contains all the elements
of G with infinite orders. Consequently, G = {s+ t : s, t ∈ NG}.
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Proof: (a) By Lemma 3.7 and the hypothesis, we have NG = {e}, and hence CG = {e}
(as G is pairwise asymptotically abelian).

(b) We may write G = Zi⊕Zm1 ⊕· · ·⊕Zmj
(notice that this includes the case of G = Zi

if we take j = 1 and m1 = 1). Let (n0
1, ..., n

0
i , l̄

0
1, ..., l̄

0
j ) ∈ G be an element of infinite

order. Without loss of generality, we can assume n0
1 ̸= 0. For any k ∈ {1, ..., j} and

ϵ > 0, there exists an irrational number tk ∈ (0, 1) such that |1− e2πi(n
0
1tk+l0k/mk)| < ϵ. On

the other hand, we choose any irrational numbers s2, ..., si ∈ (0, 1) with |1− e2πin
0
ksk | < ϵ

(k = 2, ..., i). Then ϕ : G→ Ti+j−1 ⊆ U(Ci+j−1) given by

ϕ(n1, ..., ni, l̄1, ..., l̄j) := (e2πin2s2 , ..., e2πinisi , e2πi(n1t1+l1/m1), ..., e2πi(n1tj+lj/mj))

is an injective representation of G satisfying ∥1− ϕ(n0
1, ..., n

0
i , l̄

0
1, ..., l̄

0
j )∥ < ϵ. This shows

that (n0
1, ..., n

0
i , l̄

0
1, ..., l̄

0
j ) ∈ NG. Finally, for each (l̄01, ..., l̄

0
j ) ∈ Zm1 ⊕ · · · ⊕ Zmj

, we have

(−1, 0, ..., 0, 0̄, ..., 0̄), (1, 0, ..., 0, l̄01, ..., l̄
0
j ) ∈ NG. Thus, any element in G is a sum of two

elements in NG. �

In the following, let Cn
G := {t1 · · · tn : t1, . . . , tn ∈ CG} (n ∈ N).

Proposition 3.9. (a) If G is asymptotically contained in an abelian group H, then G is
asymptotically abelian.

(b) If G is asymptotically abelian, then Cn
G contains no non-trivial subgroup of G for all

n ∈ N.
(c) If G contains a finite non-abelian subgroup H, then G is not asymptotically contained
in an abelian group.

Proof: (a) For any δ > 0, let (H, ϕ, ψ) be as in Definition 2.2. For any r, r′ ∈ G,
there are u, u′ ∈ H with ∥ϕ(r)− ψ(u)∥ < δ and ∥ϕ(r′)− ψ(u′)∥ < δ, which implies that
∥ϕ(r)ϕ(r′)− ϕ(r′)ϕ(r)∥ < 4δ.

(b) Let H ⊆ Cn
G be a subgroup of G. As G is asymptotically abelian, it is easy to see

that Cn
G is asymptotically included in {e}. Hence, H is asymptotically contained in {e}

(which is a 2-bounded group). Now, Theorem 3.4(a) ensures that H = {e}.
(c) By Proposition 3.8(a), G is not pairwise asymptotically abelian (otherwise, H will be
abelian). Thus, G is not asymptotically contained in any abelian group, because of part
(a). �

We end this subsection with the following example, which tells us that a pairwise
asymptotically abelian group need not be asymptotically abelian.

Example 3.10. (a) Let γ be the action of Z2 := {1,−1} (with the usual multiplication)
on Z given by γα(k) = αk (α ∈ Z2 and k ∈ N) and G be the semi-direct product Zoγ Z2.
For any (k, α), (l, β) ∈ G, we have

(k, α)−1(l, β)−1(k, α)(l, β) = (αβk + βl − αβl − αk, 1),



8 CHI-WAI LEUNG, CHI-KEUNG NG AND NGAI-CHING WONG

which equals either (0, 1), (−2k, 1), (2l, 1) or (2k − 2l, 1). This shows that CG = 2Z ×
{1}. Thus, Proposition 3.9(b) tells us that G is not asymptotically abelian and hence
is not asymptotically contained in any abelian group. Next, we show that G is pairwise
asymptotically abelian. Let

V :=

(
0 1
1 0

)
and Wθ :=

(
e−πiθ 0
0 eπiθ

)
(θ ∈ (0, 1/2) \Q).

As VWθV = W ∗
θ , the map ϕθ : G → U(C2) given by ϕθ(k, 1) := W k

θ and ϕθ(k,−1) :=
W k

θ V (k ∈ Z) is an injective group homomorphism. Moreover, for any k ∈ Z,
∥1−W 2k

θ ∥ = ∥1−W2kθ∥ = 2 sin kθ

can be made arbitrarily small if θ is small enough. This shows that any singleton subset
of CG is asymptotically included in {e} as required.

(b) Let γ be the action of Z on Z ⊕ Z given by γk(m,n) = (m + kn, n), and G :=
(Z⊕Z)oγZ. It is not hard to see that CG = (Z⊕{0})×{0}, and G is not asymptotically
abelian by Proposition 3.9(b). Suppose that θ ∈ (0, 2) is irrational and u, v ∈ U(H) are
such that uv = eθπivu. Then ϕ(((m,n), k)) := emθπivnuk is an injective representation of
G. In fact, if emθπivnuk = 1H, then e

(m−nk)θπiukvn = 1H, which implies that k = 0 = n and
hence m = 0 as well. Therefore, any singleton subset of CG is asymptotically included in
{e}, and G is pairwise asymptotically abelian.

In Example 3.10(b), the C∗-subalgebra generated by u and v is the irrational rotation
algebra (yet this C∗-algebra is far from being the group C∗-algebra of (Z⊕ Z)oγ Z).

3.3. Asymptotic equivalence.

One can define an equivalence relation in a collection of groups using asymptotic close-
ness.

Definition 3.11. If G1, ..., Gn are groups in a class G such that Gi is asymptotically
close to Gi+1 for every i = 1, .., n − 1, then we say that G1 and Gn are asymptotically
equivalent inside G. When G is the class of all groups, we simple say that G1 and Gn are
asymptotically equivalent.

It is natural to ask how this equivalence relation behaves in some well-known classes
of groups. Note, first of all, that by Propositions 3.8(a) and 3.9(a), we have the following
result.

Corollary 3.12. Let Gf be the class of groups whose elements are all of finite orders. If
G and H are asymptotically equivalent inside Gf , then G is abelian if and only if H is
abelian.

Note that the two groups in Corollary 3.12 need not be isomorphic (see Example
2.3(d)). Yet, they will be isomorphic if we impose a stronger assumption on them as
stated in the following corollary, which is a direct consequence of Theorem 3.4(b).
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Corollary 3.13. (a) If G is k-bounded for some integer k ≥ 2 and is asymptotically
equivalent to H, then G is isomorphic to H.

(b) If two groups are asymptotically equivalent, then either they are both finite and iso-
morphic or they are both infinite.

Finally, we have the following result concerning finitely generated abelian groups.

Corollary 3.14. Suppose that H is the class of all finitely generated infinite abelian
groups. Any two elements in H are asymptotically equivalent inside H.

Proof: Suppose that G = Zk ⊕Zm1 ⊕ · · · ⊕Zmj
(this includes the case of G = Zk when

j = 1 = m1). There exist irrational numbers t1, ..., tk ∈ (0, 1) such that {1, t1, ..., tk} are
Q-linearly independent (notice that as Q + Qt1 + ... + Qtk is countable, one can obtain
this claim by induction). Then

(n1, ..., nk) 7→ e(n1t1+···+nktk)2πi

is an injective representation of Zk in U(C) with dense range. Thus, Z is asymptotically
close to Zk (see Example 2.3(b)). Consequently, G is asymptotically close to G1 :=

Z ⊕ Zm1 ⊕ · · · ⊕ Zmj
. If t ∈ (0, 1) is an irrational number, then (n, k1) 7→ e

(nt+
k1
m1

)2πi

is an injective representation of Z ⊕ Zm1 in U(C) with dense range. Therefore, Z is
asymptotically close to Z⊕Zm1 , and so are G1 and G2 := Z⊕Zm2⊕· · ·⊕Zmj

. Inductively,
we see that G is asymptotically equivalent to Z inside H, and so is H. �
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