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Abstract. A bounded linear operator T : C0(X)→ C0(Y ) of continu-

ous functions is called an orthomorphism if it is disjointness preserving,

i.e.,

Tf0 Tf1 = 0 whenever f0 f1 = 0.

We call T an n–orthomorphism if it is n–disjointness preserving, i.e.,

Tf0 Tf1 · · ·Tfn = 0 whenever fi fj = 0, ∀i 6= j.

It is clear that a sum of n orthomorphisms is an n–orthomorphism. But

counter examples show that the converse does not hold. In this paper,

we study the question of how to write an n–orthomorphism as a sum of

n orthomorphisms approximately.

1. Introduction

A basic and well studied model in analysis is the space C(X) of continuous

functions on a compact Hausdorff space X. These spaces are universal

Banach spaces in the sense that every Banach space E can be embedded

into C(UE∗) as a Banach subspace, where UE∗ is the weak* compact unit

ball of the dual space E∗ of E. In fact, C(X) carries a very rich structure.

For example, every abelian C*-algebra with an identity is a C(X), and a

semi-simple abelian Banach algebra is a subalgebra of some C(X). Here, X

is the maximal ideal space of the algebra. On the other hand, every Banach

lattice which is an AM-space with a strong unit is also a C(X), and many

others can be considered as sublattices of some C(X).

It is now a common knowledge that the full structure of C(X) can be

recovered from either the algebraic structure (see, e.g., [13]), or from the

vector lattice structure (see, e.g., [2]). Indeed, let T : C(X) → C(Y ) be

a bijective linear operator. If T is an algebra isomorphism then there is a

homeomorphism ϕ : Y → X such that Tf = f ◦ ϕ,∀f ∈ C(X). If T is
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a lattice isomorphism then there is a homeomorphism ϕ : Y → X and a

strictly positive h in C(Y ) such that Tf = h · f ◦ ϕ,∀f ∈ C(X). See, e.g.,

[19, 21, 24] for more expositions.

Let T : C(X) → C(Y ) be a linear map. We call T an algebra homomor-

phism if it preserves products, i.e.,

T (fg) = Tf Tg, ∀f, g ∈ C(X).

When the underlying field is R, we call T a lattice homomorphism if it

preserves the meet, i.e. the infimum, operations, i.e.,

T (f ∧ g) = Tf ∧ Tg, ∀f, g ∈ C(X).

A bijective algebra (resp. lattice) homomorphism is called an algebra (resp.

lattice) isomorphism.

We see that T is a lattice homomorphism if and only if it preserves zero

meets, i.e.,

Tf ∧ Tg = 0 whenever f ∧ g = 0.

It also amounts to say that T is positive, i.e. Tf ≥ 0 whenever f ≥ 0, and

T is disjointness preserving, i.e.,

|Tf | ∧ |Tg| = 0 whenever |f | ∧ |g| = 0.

Being a linear map between continuous functions, T is disjointness preserv-

ing exactly when T preserves zero products, i.e.,

Tf Tg = 0 whenever fg = 0.

From these points of view, the algebraic and the lattice structure do have a

common point. In other words, the zero products from the algebraic struc-

ture coincide with the disjointness from the lattice structure of continuous

functions. Indeed, the zero product, or equivalently, the disjointness struc-

ture suffices to determine C(X).

There are many attentions put on disjointness preserving linear operators

(also called Lamperti operator in, e.g., [3], or separating map in, e.g., [9]).

on Banach algebras and Banach lattices (see, e.g., [1, 3–12, 14–19, 25]). A

bounded disjointness preserving linear operator is called an orthomorphism.

Note that lattice homomorphisms are exactly positive orthomorphisms. Mo-

tivated by the notion of regular operators which are differences of positive

operators, and extending the projects in [4, 6], we are interested in the ques-

tion when a bounded linear operator of continuous functions can be written

as a finite sum of orthomorphisms.

If a bounded linear operator T = T1+T2 is a sum of two orthomorphisms,

then T is a 2–orthomorphism, that is, Tf0Tf1Tf2 = 0 for every pairwise
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disjoint functions f0, f1, f2 in C(X). However, the 2–disjointness preserving

property does not quarantee that T is a finite sum of orthomorphisms. In

fact, Example 2.4 below provides us a 2–orthomorphism from C([0, 1]) into

C([0, 1]), which cannot be written as a finite sum of orthomorphisms.

However, we can always write an n–orthomorphism T of continuous func-

tions as a sum of at most n orthomorphisms in an approximative way. The

approximation here is defined through an approximate order identity {gλ},
i.e., an increasing net of non-negative functions with supλ gλh = h for every

nonnegative h. We call T an approximate sum of n orthomorphisms if there

is an approximate order identity {gλ} such that gλT is a sum of at most n

orthomorphisms for each λ.

In a little more general setting, we consider the C*-algebras and Banach

lattices, C0(X) and C0(Y ), of continuous functions defined respectively on

locally compact Hausdorff spaces X and Y vanishing at infinity. In Section

2, along with some preliminary preparation, we provide a counter example to

show that a 2–orthomorphism of C[0, 1] need not be a sum of finitely many

orthomorphisms. In Section 3, we discuss how to write an n–orthomorphism

as a sum of n orthomorphisms approximately. In Theorem 3.1, we see that

a bounded linear operator T : C0(X) → C0(Y ) is an n–orthomorphism if

and only if its canonical extension from C0(X) into the second dual C0(Y )∗∗

of C0(Y ) is a sum of at most n orthomorphisms. In Theorem 3.3, without

going through C0(Y )∗∗, among the equivalent conditions, we show that T :

C0(X)→ C0(Y ) is an n–orthomorphism if and only if it is an approximate

sum of n orthomorphisms.

Some results of this paper are based on the PhD dissertation of Jung-Hui

Liu [20].

2. Preliminaries and a counter example

Proposition 2.1 ([3, 9, 15, 17]). Let X,Y be locally compact Hausdorff

spaces. Let T : C0(X) → C0(Y ) be a disjointness preserving linear map.

Then we can partition Y = Y0 ∪ Yc ∪ Yd into a closed subset Y0, an open

subset Yd, and Yc = Y \ (Y0 ∪ Yd), satisfying the following properties.

(1) A point y ∈ Y0 exactly when the linear functional f 7→ Tf(y) is zero on

C0(X). In other words, Y0 =
⋂
f∈C0(X)(Tf)−1(0), and thus,

Tf |Y0= 0.

(2) A point y ∈ Yd (resp. y ∈ Yc) exactly when the linear functional f 7→
Tf(y) is nonzero and discontinuous (resp. continuous) on C0(X).
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(3) There exist a continuous map ϕ : Yc → X and a non-vanishing bounded

continuous function h on Yc such that

Tf |Yc= h · f ◦ ϕ, ∀f ∈ C0(X).

(4) When T is bijective, we have Y = Yc, and thus T is automatically

bounded in this case.

(5) When T is bounded, especially when T is positive, Yd = ∅ and Yc = Y \Y0
is open.

For convenience, we usually write an orthomorphism, i.e., a disjointness

preserving bounded linear operator, as Tf = h · f ◦ ϕ by setting h = 0 on

Y0. Note that Yd = ∅ and ϕ : Y = Y0 ∪ Yc → X is continuous on the cozero

set coz(h) = {y ∈ Y : h(y) 6= 0} = Yc of h.

Definition 2.2. A bounded linear map T : C0(X) → C0(Y ) is called an

n–orthomorphism if it is n–disjointness preserving, i.e.,

Tf0 Tf1 · · ·Tfn = 0 whenever fi fj = 0,∀i 6= j.

A sum of n orthomorphisms is clearly an n–orthomorphism. However,

an n–orthomorphism is not necessarily a sum of n orthomorphisms. We are

grateful to the referee for sharing with us the following example.

Example 2.3. Let T = {eiθ : 0 ≤ θ ≤ 2π} be the unit circle in the complex

plane. Let T : C(T)→ C(T) be defined by

Tf(eiθ) = f(eiθ/2) + f(−eiθ/2), ∀eiθ ∈ T.

It is plain that T is a well-defined 2–orthomorphism. However, we cannot

write T = T1 + T2 as a sum of 2 orthomorphisms. Suppose we could, and

Tf(eiθ) = T1f(eiθ) + T2(e
iθ)

= h1(e
iθ)f(ϕ1(e

iθ)) + h2(e
iθ)f(ϕ2(e

iθ)), ∀eiθ ∈ T.

Here, hj = Tj1 ∈ C(T) with 1 being the constant one function, and ϕj :

T → T is continuous at y whenever hj(y) 6= 0 for j = 1, 2. Dealing with

appropriate continuous functions f from C(T), we see that

{ϕ1(e
iθ), ϕ2(e

iθ)} = {eiθ/2,−eiθ/2},

and

h1(e
iθ) = h2(e

iθ) = 1, ∀eiθ ∈ T.
Consequently, both ϕ1, ϕ2 are continuous maps from T into itself. It follows

from a connectedness argument that, with either j = 1 or j = 2, the map

ϕj(e
iθ) = eiθ/2 for all θ in (0, 2π). However, this prevents ϕj from being

continuous at 1. This contradiction shows that T cannot be written as a

sum of 2 orthomorphisms.
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However, we can write T as a sum of 4 orthomorphisms. To this end, let

1 = g1+g2 be a continuous partition of T such that g1 = 0 in a neighborhood

of 1, and g2 = 0 in a neighborhood of −1. Then, both g1T and g2T can be

written as sums of 2 orthomorphisms. Thus T = g1T + g2T is a sum of 4

orthomorphisms. �

In [6, Example 1], there is a positive 2–orthomorphism which cannot be

written as a finite sum of lattice homomorphisms. Recall that a lattice

homomorphism is a positive orthomorphism. In the following we show that

the 2–orthomorphism in [6, Example 1] cannot be written as a finite sum of

orthomorphisms, either.

Example 2.4. Assume ϕ1, ϕ2 : [0, 1]→ [0, 1] are continuous maps such that

ϕ1(0) = ϕ2(0) and ϕ1(y) < ϕ2(y) for all 0 < y ≤ 1. Let T : C[0, 1]→ C[0, 1]

be defined by

Tf(y) =


1 + sin(1/y)

2
f(ϕ1(y)) +

1− sin(1/y)

2
f(ϕ2(y)), if 0 < y ≤ 1;

f(ϕ1(0)), if y = 0.

It is easy to see that T is a 2–orthomorphism. We shall show that T cannot

be written as a sum of finitely many orthomorphisms of C[0, 1].

Assume on contrary that

T = S1 + S2 + · · ·+ Sn,

where each Si is an orthomorphism, or more precisely,

Sif(y) = ri(y)f(ψi(y)), ∀y ∈ [0, 1], i = 1, 2, . . . , n.

Here, each ri = Si(1) ∈ C[0, 1] with 1 being the constant one function, and

ψi : [0, 1]→ [0, 1] is continuous at y whenever ri(y) 6= 0.

Let p1, p2, . . . , p2n be 2n distinct numbers in [0, 1]. For each i = 1, 2, . . . , 2n,

let {yij}j be a sequence in (0, 1] such that limj→∞ yij = 0 and

1 + sin(1/yij)

2
= pi, for j = 1, 2, . . . .

Let

Aij = {k : ψk(yij) 6= ϕ2(yij)} ⊆ {1, 2, . . . , n}.

Choose fij from C[0, 1] such that

fij(ϕ1(yij)) = fij(ψk(yij)) = 1, ∀k ∈ Aij ,

and

fij(ϕ2(yij)) = 0.



6 CHING-JOU LIAO, JUNG-HUI LIU AND NGAI-CHING WONG*

Consider the value of Tf(yij), we have∑
k∈Aij

rk(yij) =
1 + sin(1/yij)

2
= pi, for j = 1, 2, . . . .

Although the nonempty set Aij can be different for each j = 1, 2, . . .,

there are only 2n − 1 of such choices as Aij ⊆ {1, 2, . . . , n}. Therefore, we

can assume there is a nonempty subset Ai of {1, 2, . . . , n} such that∑
k∈Ai

rk(yij) = pi, for infinitely many j = 1, 2, . . . .

By continuity, we have∑
k∈Ai

rk(0) = pi, for i = 1, 2, . . . , 2n.

Since there are exactly 2n− 1 distinct nonempty subsets of {1, 2, . . . , n}, we

will have some Ai1 = Ai2 with i1 6= i2. Then a contradiction arrives:

pi1 =
∑
k∈Ai1

rk(0) =
∑
k∈Ai2

rk(0) = pi2 .

�

Let Y be a locally compact Hausdorff space and C0(Y,C) be the C*-

algebra of all continuous complex-valued functions on Y vanishing at infinity.

The dual space of C0(Y,C) is the Banach space M(Y,C) of all complex-

valued regular Borel measures on Y with finite variation norm. By Zorn’s

Lemma and the Radon-Nikodym theorem, M(Y,C) can be described as an

l1–direct sum

M(Y,C) = ⊕1{L1(µ,C) : µ ∈ C} ⊕1 l
1(Y,C),

where C is a maximal family of mutually singular continuous positive mea-

sures inM(Y,C) of norm one. Accordingly, the double dual space of C0(Y,C)

is given by an `∞–direct sum

C0(Y,C)∗∗ = ⊕∞{L∞(µ,C) : µ ∈ C} ⊕∞ l∞(Y,C). (2.1)

The canonical embedding J sends C0(Y,C) into C0(Y,C)∗∗. More precisely,

in the setting of (2.1), for any f in C0(X) we have

Jf = ⊕{fµ : µ ∈ C} ⊕ fa.

Here, the atomic part fa in l∞(Y,C) agrees with f pointwisely, and each of

the continuous part, fµ in L∞(µ,C), agrees µ–almost everywhere with f on

Y .

Being a commutative W*-algebra, C0(Y,C)∗∗ ∼= C(Ỹ ,C). The spectrum

Ỹ of C0(Y,C)∗∗ consists of pure states of C0(Y,C)∗∗, and Y can be considered
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as a subset of Ỹ consisting of normal pure states, i.e., those being weak*

continuous.

By restricting to the real forms of the algebras, we can also assume the

above hold when the underlying field is the real, R. In particular, we will

use the identification C0(Y )∗∗ ∼= C(Ỹ ) for both the real and complex cases.

Moreover, the realization C0(Y )∗∗ ∼= ⊕∞{L∞(µ) : µ ∈ C} ⊕∞ l∞(Y ) also

helps us to visualize our arguments more constructively.

Convention. In the following, we will deal with the real case, and corre-

sponding statements for the complex case follow from the real case with

simple modifications. We also assume that Y consists of infinitely many

points, for else the assertions being trivial.

Remark that Ỹ is a compact and extremely disconnected space (see, e.g.,

[23]), that is, the closure of any open set in Ỹ is again open in Ỹ . It

follows that C(Ỹ ) is Dedekind complete; namely, every nonempty set in

C(Ỹ ) bounded form above has a least upper bound ([22]).

3. Writing an n–orthomorphism as a sum of n orthomorphisms

In the following, we assume that X and Y are locally compact Hausdorff

spaces, and let J : C0(Y )→ C(Ỹ ) ∼= C0(Y )∗∗ be the canonical embedding.

It is plain that if T : C0(X) → C0(Y ) is an n–orthomorphism, then its

canonical extension JT : C0(X) → C(Ỹ ) is also an n–orthomorphism. In

fact,

(JTf1)(JTf2) · · · (JTfn+1) = J(Tf1 · Tf2 · · ·Tfn+1) = J(0) = 0

if fifj = 0 for all i 6= j.

Although Examples 2.3 and 2.4 tell us that we might not be able to

write T as a sum of at most n orthomorphisms, we can always do so for

JT . The following result is a consequence of [4, Theorems 5 and 6]. The

original results in [4] deal with n–orthomorphisms from a Reisz space into

a Dedekind complete Riesz space. Note that the reason of passing through

to JT in the following results is to utilize the Dedekind completeness of

C(Y )∗∗ ∼= C(Ỹ ). If C0(Y ) is itself Dedekind complete, all statements below

are valid with T directly.

Theorem 3.1. Let X,Y be locally compact Hausdorff spaces, let J : C0(Y )→
C(Ỹ ) (∼= C0(Y )∗∗) be the canonical embedding, and let T : C0(X)→ C0(Y )

be an n–orthomorphism. Then there are n orthomorphisms T1, T2, . . . , Tn

from C0(X) into C(Ỹ ) such that

JT = Σn
i=1Ti
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Moreover, if T is positive then all Ti can be chosen to be positive.

As a demonstration, consider the 2–orthomorphism T of C[0, 1] in Ex-

ample 2.4, we can set h̃i = ⊕µhi,µ ⊕ hi in C[0, 1]∗∗ = ⊕∞{L∞(µ) : µ ∈
C} ⊕∞ `∞([0, 1]) with

h1(y) =


1 + sin(1/y)

2
, y ∈ (0, 1];

1

2
, y = 0,

h2(y) =


1− sin(1/y)

2
, y ∈ (0, 1];

1

2
, y = 0,

and hi,µ agrees µ–almost everywhere with hi on [0, 1] for all µ in C and

i = 1, 2. Then

JTf = h̃1(Jf) ◦ ϕ1 + h̃2(Jf) ◦ ϕ2

= (⊕µ∈C h1,µfµ ◦ ϕ1)⊕ h1fa ◦ ϕ1 + (⊕µ∈C h2,µfµ ◦ ϕ2)⊕ h2fa ◦ ϕ2

is a sum of 2 orthomorphisms.

We shall show that any n–orthomorphism can be written as a sum of

(at most) n orthomorphisms approximately. In Example 2.4, although the

2–orthomorphism T cannot be written as a finite sum of orthomorphisms,

T might be expressed as such a finite sum if we avoid the point y = 0. More

explicitly, if g ∈ C[0, 1] with g(0) = 0, then the operator gT can be written

as a sum of 2 orthomorphisms. This suggests us the following definition.

Recall that an increasing net {gλ} of non-negative functions in C0(Y ) is

called an approximate order identity if supλ gλh = h for every non-negative

h in C0(Y ). The supremum here is taken in the sense of the lattice order

on C0(Y ), as opposed to pointwise supremum. Indeed, such an increasing

net {gλ} satisfies exactly the conditions that 0 ≤ gλ ≤ 1 for all λ and

supλ gλ(y) = 1 for all y in a dense subset of Y .

Definition 3.2. A bounded linear operator T : C0(X)→ C0(Y ) is called an

approximate sum of n orthomorphisms if there exists an approximate order

identity {gλ} in C0(Y ) such that for all λ we have

gλT = Σn
i=1T

λ
i ,

where T λi (can be zero) is an orthomorphism for i = 1, 2, · · ·n.

In Example 2.4, for each n = 1, 2, . . ., let

gn(y) =


0, 0 ≤ y ≤ 1

2n ;

2ny − 1, 1
2n ≤ y ≤

1
n ;

1, 1
n ≤ y ≤ 1.
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Then {gn} is an approximate order identity of C[0, 1], and

gnTf = h1nf ◦ ϕ1 + h2nf ◦ ϕ2

is a sum of 2 orthomorphisms from C[0, 1] into C[0, 1]. Here, hin = gnhi in

C[0, 1] agrees with hi on [1/n, 1] for i = 1, 2 and n = 1, 2, . . ..

The following result extends and enriches [6, Theorem 2] to the case of

(not necessarily positive) linear operators between continuous functions on

locally compact spaces.

Theorem 3.3. Let X,Y be locally compact Hausdorff spaces, let T : C0(X)→
C0(Y ) be a bounded linear operator, and let n be a fixed positive integer. The

following are equivalent.

(1) T is an approximate sum of n orthomorphisms.

(2) T is an n–orthomorphism.

(3) There are orthomorphisms Ti : C0(X)→ C(Ỹ ), such that

JT = T1 + T2 + · · ·+ Tn.

Here, J : C0(Y )→ C0(Y )∗∗ (∼= C(Ỹ )) is the canonical embedding

(4) For each y in Y , there are scalars a1, a2, . . . an and points x1, x2, . . . , xn

in X satisfying

Tf(y) =
n∑
i=1

aif(xi), ∀f ∈ C0(X).

(5) There is a scalar valued function k on X × Y such that for each y

in Y we have k(x, y) = 0 except for at most n of x in X, and

Tf(y) =

∫
Y
k(x, y)f(x)dσ, ∀f ∈ C0(X).

Here, σ is the counting measure.

(6) There are (maybe empty) disjoint subsets Y0, H1, H2, . . . ,Hn of Y

such that their union H is denes in Y . Each Hm (m = 1, 2, . . . , n)

is open, and on which there exist non-vanishing bounded scalar func-

tions a1, a2 . . . am, and continuous maps xi : Hm → X with xi(y) 6=
xj(y) for all y in Hm and i 6= j, satisfying that

Tf(y) =

m∑
i=1

ai(y)f(xi(y)), ∀f ∈ C0(X), ∀y ∈ Hm.

Moreover, Y0 is closed in Y , and

Tf(y) = 0, ∀f ∈ C0(X), ∀y ∈ Y0.

Proof. (1) implies (2): Assume that f0, f1, . . . , fn ∈ C0(X) and fifj 6= 0 for

i 6= j. Suppose that {gλ} is an approximate order identity of C0(Y ) such
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that gλ · T =
∑n

i=1 T
λ
i , where each T λi is an orthomorphism. In particular,

gλT is n–disjointness preserving. Thus

gnλ(Tf0Tf1 · · ·Tfn) = 0, ∀λ.

As gλ(Tfm)± ↑ (Tfm)± for each m = 0, 1, 2, . . . , n, we see that

Tf0Tf1 · · ·Tfn = 0.

So T is an n–orthomorphism.

(2) implies (3): This is Theorem 3.1.

(3) implies (4): Since each Ti : C0(X) → C(Ỹ ) is an orthomorphism,

by Proposition 2.1 there exist continuous functions hi : Ỹ → R and maps

ϕi : Ỹ → X such that Tif = hi · f ◦ ϕi. Consequently,

JTf(y) =

n∑
i=1

hi(y)f(ϕi(y)), ∀f ∈ C0(X),∀y ∈ Ỹ .

For each y in Y , setting ai = hi(y) and xi = ϕi(y) we have

Tf(y) =
n∑
i=1

aif(xi), ∀f ∈ C0(X).

(4) ⇔ (5): Let Tf(y) =
∑n

i=1 aif(xi), where ai and xi depend on y.

Define

k(x, y) =

{
ai, x = xi for i = 1, 2, . . . , n;

0, otherwise.

We thus have (4) =⇒ (5). It is also plain for the reverse implication.

(4) implies (6): Clearly, the set Y0 =
⋂
f∈C0(X)(Tf)−1(0) is closed in Y ,

and on which every Tf vanishes. Let Yn be the subset of the open set Y \Y0
consisting of all points y0 in Y such that there are n distinct points x1(y0),

x2(y0), . . . , xn(y0) in X and n non-zero real numbers a1(y0), a2(y0), . . . ,

an(y0) satisfying

Tf(y0) =

n∑
i=1

ai(y0)f(xi(y0)), ∀f ∈ C0(X).

Assume y0 ∈ Yn. Let Ui be an open neighborhood of xi(y0) in X such that

Ui ∩ Uj = ∅ for i 6= j. Choose by Uryshon’s Lemma g1, g2, . . . , gn from

C0(X) such that 0 ≤ gi ≤ 1, gi(xi(y0)) = 1, and gi = 0 outside Ui, for

i = 1, 2, . . . , n. As Tgi(y0) = ai(y0) 6= 0, and the continuity of Tgi, we have

Tg1(y)Tg2(y) · · ·Tgn(y) 6= 0

for all y in an open neighborhood V of y0 in Y . By (4), for all y in V there

are (maybe not all distinct) points x1(y), x2(y), . . . , xn(y) in X and (maybe
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zero) real numbers a1(y), a2(y), . . . , an(y) such that

Tf(y) =
n∑
i=1

ai(y)f(xi(y)), ∀f ∈ C0(X). (3.1)

However, if there are less than n distinct points in {x1(y), x2(y), . . . , xn(y)},
or any one of a1(y), a2(y), . . . , an(y) is zero, then there will be some Tgi(y) =

0, as g1, g2, . . . , gn are pairwise disjoint. This forces V ⊆ Yn, and thus Yn

is an open subset of Y \ Y0. Moreover, we can arrange xi(y)’s so that each

xi(y) belongs to exactly Ui for all y in V for i = 1, 2, . . . , n. It is then routine

to see that all ai are continuous on V and all xi are continuous from V into

X.

Let V ′ be another open subset of Yn such that on V ′ a similar sum as

in (3.1) can be obtained. If V ′ is disjoint from V , then in a trivial manner

we can extend the continuous functions ai and xi from V to V ∪ V ′, for

i = 1, 2, . . . , n.

Denote by the tuple ({ai, xi}ni=1, V ) a nonempty open subset V of the

open set Yn, on which

Tf(y) =
n∑
i=1

ai(y)f(xi(y)), ∀f ∈ C0(X).

Here, all ai are continuous and nonvanishing scalar functions on V and all

xi are continuous from V into X with distinct values everywhere. Order the

non-emtpy family of tuples ({ai, xi}ni=1, V ) by extension. In other words,

({ai, xi}ni=1, V ) ≤ ({a′i, x′i}ni=1, V
′) whenever V ⊆ V ′ and all a′i agree with

ai and x′i agree with xi on V . Using Zorn’s Lemma, we have a maximal

element ({a′′i , x′′i }ni=1, Hn). It follows from the above arguments that Hn is

an open dense subset of Yn, and (3.1) holds on Hn.

If Hn is dense in Y \Y0, then the assertion is obtained by setting Hn−1 =

· · · = H1 = ∅. If it is not, consider the nonempty open subset Y ′ = Y \Hn

of Y . The induced operator T ′ : C0(X) → C0(Y
′) defined by restric-

tion clearly satisfies (4), but with n replaced with n − 1. Let Yn−1 be

the open set of points y0 in Y ′ such that there are n − 1 distinct points

x1(y0), x2(y0), . . . , xn−1(y0) in X and n − 1 non-zero real numbers a1(y0),

a2(y0), . . . , an−1(y0) satisfying

Tf(y0) =
n−1∑
i=1

ai(y0)f(xi(y0)), ∀f ∈ C0(X). (3.2)

In a similar manner, we obtain an open dense subset Hn−1 of Yn−1, which is

open in Y ′, and thus also in Y , such that (3.2) holds on Hn−1. If Hn∪Hn−1

is dense in Y \ Y0, the assertion is obtained; otherwise, we continue to find

Hn−2 from Y \ Hn ∪Hn−1, . . . . Eventually, we will have n disjoint open
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sets, Hn, Hn−1, . . . , H1, some of them can be empty, such that the union

H1∪ · · · ∪Hn is an open dense subset of Y \Y0, and on each Hi the asserted

sum representation as in (3.1) is established.

(6) implies (1): Set up the index α = (K,K ′), in which K,K ′ are two

nonempty compact subsets of H1 ∪ · · · ∪Hn such that K is contained in the

interior of K ′. Choose hα from C0(Y ) such that 0 ≤ hα ≤ 1, hα|K= 1 and

hα |Y \K′= 0. Order α1 = (K1,K
′
1) ≤ α2 = (K2,K

′
2) if K ′1 ⊆ K2. Then

supα hαf = f whenever f is a nonnegative function in C0(Y ) vanishing

outside the open set H1 ∪ · · · ∪ Hn. In a similar manner, let {kβ} be an

increasing net of nonnegative functions in C0(Y ) such that supβ kβf = f

whenever f is a nonnegative function in C0(Y ) vanishing outside the open

set Y \ H1 ∪ · · · ∪Hn, which is contained in Y0. Order the indices λ =

(α, β) ≤ λ′ = (α′, β′) whenever α ≤ α′ and β ≤ β′. Let gλ = hα + kβ for

each λ = (α, β). Clearly, {gλ} is an approximate order identity of C0(Y ),

and gλT = hαT is a sum of at most n orthomorphisms. �

We remark that in proving the implication “(4)⇒ (6)”, one might not be

able to choose the set Hn to be the whole of Yn. As in Example 2.3, Y2 = T
while any choice of H2 misses at least one point from T.

The equivalence “(2) ⇔ (6)” in Theorem 3.3 can be rephrased in the

following result.

Corollary 3.4. A bounded linear operator T : C0(X) → C0(Y ) is an n–

orthomorphism if and only if restricting the range to some dense subset H

of Y , we can write T as a sum of at most n orthomorphisms. In this case,

there are bounded continuous scalar functions h1, . . . , hn on H and maps

ϕ1, . . . , ϕn : H → X such that

Tf |H =

n∑
i=1

hif ◦ ϕi, ∀f ∈ C0(X).

Moreover, the symbol map ϕi is continuous wherever the weight function hi

is nonvanishing for i = 1, 2, . . . , n.

In Example 2.4, on the dense subset H = H2 = (0, 1] of [0, 1], we can

write T as a sum of two orthomorphisms.

Finally, let us repeat that all results in this paper are valid in both the

real and the complex cases. For example, f1 + if2, g1 + ig2 in C0(X,C)

are disjoint if and only if their real parts and imaginary parts are disjoint,

namely, fjgk = 0 for j, k = 1, 2. It follows that a complex linear operator

TC : C0(X,C) → C0(Y,C) is n–disjointness preserving if and only if its

real form TR : C0(X,R) → C0(Y,R) is n–disjointness preserving. Here,
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TC(f1 + if2) = TRf1 + iTRf2 for f1, f2 in C0(X,R). The same is true for TC

and TR being (or approximately being) finite sums of weighted composition

operators, or satisfying other equivalent properties stated in Theorem 3.3.

We end this paper with our appreciation to the referee for many helpful

suggestions and comments.
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