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Abstract. In this paper, we study surjective maps ϕ : E+ → F+ between positive cones

of two ordered Banach spaces E and F , which preserve norm of sums, i.e.,

‖ϕ(x) + ϕ(y)‖ = ‖x+ y‖, ∀x, y ∈ E+.

In the case when E,F are strictly convex smooth Banach lattices, as well as Lp(µ) spaces

(1 < p ≤ +∞), we show that ϕ can be extended to a real linear map/isometry from E onto

F . A counter example for the case when p = 1 is presented.

1. Introduction

Let ϕ : E → F be a surjective map between two Banach spaces. The classical Mazur-Ulam

theorem [6] states that ϕ is an affine map when it preserves norm of differences, i.e.,

‖ϕ(x)− ϕ(y)‖ = ‖x− y‖, ∀x, y ∈ E.

One might ask what happens if ϕ preserves norm of sums instead, i.e.,

‖ϕ(x) + ϕ(y)‖ = ‖x+ y‖, ∀x, y ∈ E.

But this is indeed a trivial question. In fact, putting y = 0,±x into the above condition, we

have ϕ(0) = 0, as well as ‖ϕ(x)‖ = ‖x‖ and ϕ(−x) = −ϕ(x) for all x in E. Consequently,

‖ϕ(x)− ϕ(y)‖ = ‖ϕ(x) + ϕ(−y)‖ = ‖x+ (−y)‖ = ‖x− y‖, ∀x, y ∈ E.

The Mazur-Ulam theorem ensures that ϕ is a real linear isometry.

To formulate a meaningful problem of norm of positive sum preservers, motivated by

several well-known Banach-Stone and Lamperti type theorems (see, e.g., [2, 3]) and recent

development of various preserver problems (see, e.g., [7]), we propose the following
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Problem 1.1. Let E,F be ordered Banach spaces with positive cones E+, F+. Let ϕ : E+ →
F+ be a surjective map preserving norm of sums, i.e.,

‖ϕ(x) + ϕ(y)‖ = ‖x+ y‖, ∀x, y ∈ E+.

Can we extend ϕ to a positive linear map from E onto F?

There are already some efforts appeared in the literature. For example, Nagy [9, 10], and

Kuo, Tsai, Wong and Zhang [5] have studied similar problems for Schatten p-class operators.

In this paper, we discuss norm of positive sum preservers of smooth Banach lattices in Section

2. In particular, every such map of strictly convex smooth Banach lattices extend to a

linear map (Corollary 2.5). We answer Problem 1.1 affirmatively for the case when E,F are

Lp(µ) spaces (1 < p ≤ +∞) in Section 3. A detail analysis on such preservers of the finite

dimensional positive cones `pn+ are given in Section 4. In particular, a counter example to

Problem 1.1 for the case when p = 1 is presented. In a forthcoming paper [13], we will answer

Problem 1.1 for the case when E,F are noncommutative Lp(M), Lp(N) spaces associated to

von Neumann algebras M,N .

2. The case of smooth Banach lattices

In this paper, without loss of generality, we consider only real vector spaces.

Let E be a Banach space. We say that E is strictly convex if

‖x+ y‖ = ‖x‖+ ‖y‖ =⇒ x = δy for some δ > 0, ∀x 6= 0, y 6= 0.

We say that E is smooth if its norm is Gâteaux differentiable, namely, the limit

G(x)y := lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists in R whenever x, y ∈ E with x 6= 0.

Let E = (E,≤, ‖ · ‖) be a Banach lattice with a partial order ≤. Let E+ = {x ∈ E : x ≥ 0}
be the positive cone of E. We say that E has a strictly monotone norm if

x ≤ y and x 6= y =⇒ ‖x‖ < ‖y‖, ∀x, y ∈ E+.

Two vectors x and y in a Banach lattice are said to be disjoint, denoted by

x⊥y, if |x| ∧ |y| = 0.

For the general theory of Banach lattices and positive operators, see, e.g., Aliprantis [1],

Nieberg [11] and Hudzik [4]. In particular, we collect some well known facts in the following

lemma.

Lemma 2.1. Suppose that E is a smooth Banach lattice. We define

G(x)y = lim
t→0+

‖x+ ty‖ − ‖x‖
t

, ∀x, y ∈ E with x 6= 0.
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(1) G(x) : E → R is a linear operator.

(2) G(x)x = ‖x‖, ‖G(x)‖ = 1 and G(λx) = G(x), for every x ∈ E+ and λ > 0.

(3) G(x)y ≥ 0 for every x, y ∈ E+.

(4) If y1 ≥ y2 then G(x)y1 ≥ G(x)y2, for every x, y1, y2 ∈ E+.

The following result can be found in [12, Theorem 1]. We include the proof here for

completeness.

Lemma 2.2. Suppose that E is a smooth Banach lattice. We have

x⊥y =⇒ G(x)y = 0, ∀x, y ∈ E+.

The converse holds when E has a strictly monotone norm.

Proof. Define f(t) = ‖x + ty‖ for any fixed x, y ∈ E+. Since f( t1+t2
2 ) ≤ (f(t1) + f(t2)) /2,

we see that f is a convex function of R. Suppose x⊥y = 0 for x, y ∈ E+. We have

|x+ ty| = x+ ty ≥ x = |x|, for t ≥ 0,

|x+ ty| = (x+ ty)+ + (x+ ty)− = x− ty ≥ x = |x|, for t ≤ 0.

Hence ‖x+ty‖ ≥ ‖x‖ for all t ∈ R, and f(t) attains its minimum at t = 0. Since E is smooth,

we have

G(x)y = lim
t→0+

‖x+ ty‖ − ‖x‖
t

= f ′+(0) = 0.

Assume now E is strictly monotone. Suppose G(x)y = 0 but x ∧ y = z 6= 0. It follows

from Lemma 2.1(4) that 0 ≤ G(x)z ≤ G(x)y = 0. It forces G(x)z = 0. Hence,

‖x‖ = G(x)x = G(x)(x− z) ≤ ‖G(x)‖‖x− z‖ ≤ ‖x− z‖.

Since 0 ≤ x − z ≤ x, and x − z 6= x, the strict monotonicity of the norm implies that

‖x− z‖ < ‖x‖. This contradiction tells us that z = x ∧ y = 0. �

Lemma 2.3. Suppose that E,F are Banach lattices and F is strictly convex. Let ϕ : E+ 7→
F+ be a map preserving norm of sums, i.e.,

‖ϕ(x) + ϕ(y)‖ = ‖x+ y‖, ∀x, y ∈ E+. (2.1)

Then, ϕ is nonnegatively homogeneous, i.e.,

ϕ(λx) = λϕ(x), ∀x ∈ E+,∀λ ≥ 0,

and preserves norm of convex combinations, i.e.,

‖(1− t)x+ ty‖ = ‖(1− t)ϕ(x) + tϕ(y)‖, ∀t ∈ [0, 1].

Proof. Taking x = y in equation (2.1), one has ‖x‖ = ‖ϕ(x)‖. For x in E+ and λ > 0, we

have

‖ϕ(x) + ϕ(λx)‖ = ‖x+ λx‖ = ‖x‖+ ‖λx‖ = ‖ϕ(x)‖+ ‖ϕ(λx)‖.
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From the strict convexity of F , we have ϕ(λx) = δϕ(x) for some δ > 0. Then

λ‖x‖ = ‖ϕ(λx)‖ = ‖δϕ(x)‖ = δ‖x‖

ensures that λ = δ. Hence, ϕ(λx) = λϕ(x), and thus

‖(1− t)ϕ(x) + tϕ(y)‖ = ‖ϕ((1− t)x) + ϕ(ty)‖ = ‖(1− t)x+ ty‖, ∀t ∈ [0, 1].

�

Below are two answers to Problem 1.1 for the case of Banach lattices.

Theorem 2.4. Let E,F be smooth Banach lattices. Suppose that ϕ : E+ 7→ F+ is a surjective

map preserving norm of convex combinations, that is,

‖(1− t)ϕ(x) + tϕ(y)‖ = ‖(1− t)x+ ty‖, ∀x, y ∈ E+,∀t ∈ [0, 1]. (2.2)

(1) For all x, y in E+, we have

x⊥y =⇒ G(ϕ(x))(ϕ(y)) = 0.

(2) ϕ is nonnegative homogenous and additive; that is,

(i) ϕ(λy) = λϕ(y) for all λ ≥ 0 and y ∈ E+;

(ii) ϕ(y1 + y2) = ϕ(y1) + ϕ(y2), for all y1, y2 ∈ E+.

Consequently, ϕ has a unique positive surjective linear extension ϕ̂ : E 7→ F given by the

formula ϕ̂(x) = ϕ(x+)− ϕ(x−).

Proof. (1) Differentiating both side of (2.2) at t = 0+, we get

G(ϕ(x))(ϕ(y)− ϕ(x)) = G(x)(y − x).

Putting t = 0 in (2.2), we have ‖ϕ(x)‖ = ‖x‖. By Lemma 2.1(2), we have G(x)x =

G(ϕ(x))ϕ(x). Hence,

G(x)y = G(ϕ(x))ϕ(y), for all x, y ∈ E+. (2.3)

It follows from Lemma 2.2 that

x⊥y =⇒ G(x)y = 0 =⇒ G(ϕ(x))ϕ(y) = 0.

(2) For any x, y ∈ E+ and λ > 0, it follows from (2.3) that

λG(x)y = λG(ϕ(x))(ϕ(y)) = G(ϕ(x))(λϕ(y)),

G(x)(λy) = G(ϕ(x))(ϕ(λy)).

Subtracting the two equations, we have

G(ϕ(x))(λϕ(y)− ϕ(λy)) = 0. (2.4)
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Since ϕ is surjective, we can choose x from E+ such that ϕ(x) = (λϕ(y)−ϕ(λy))+. It follows

from part (1) and (2.4) that

G(ϕ(x))(λϕ(y)− ϕ(λy)) = G((λϕ(y)− ϕ(λy))+)((λϕ(y)− ϕ(λy))+ − (λϕ(y)− ϕ(λy))−)

= G((λϕ(y)− ϕ(λy))+)(λϕ(y)− ϕ(λy))+

= ‖(λϕ(y)− ϕ(λy))+‖ = 0.

This forces that (λϕ(y)− ϕ(λy))+ = 0. Similar argument shows that (λϕ(y)− ϕ(λy))− = 0.

Hence, ϕ(λy) = λϕ(y) for all λ > 0 and y ∈ E+.

With a similar argument we can show that ϕ(y1 + y2) = ϕ(y1) + ϕ(y2) for all y1, y2 in

E+. �

Corollary 2.5. Suppose that E,F be smooth Banach lattices and F is strictly convex. Let

ϕ : E+ → F+ be a surjective map preserving norm of sums, i.e.,

‖ϕ(x) + ϕ(y)‖ = ‖x+ y‖, ∀x, y ∈ E+.

Then ϕ can be extended to a positive linear map from E onto F .

Proof. The assertion follows from Lemma 2.3 and Theorem 2.4. �

3. Norm of sums preservers of Lp+(Ω,Σ, µ)

In this section, we consider norm of positive sum preservers between positive cones Lp+(Ω,Σ, µ)

of Lp(Ω,Σ, µ) spaces. Note that Lp(Ω,Σ, µ) spaces are strictly convex Banach lattices with

smooth and strictly monotone norms, when 1 < p <∞.

Noting that the disjointness x⊥y here is equivalent to that xy = 0 (almost everywhere) on

Ω, we have the following well-known fact.

Lemma 3.1. Let 1 < p <∞.

x⊥y =⇒ ‖x+ y‖p = ‖x‖p + ‖y‖p, ∀x, y ∈ Lp(Ω,Σ, µ).

The converse holds whenever x, y ∈ Lp+(Ω,Σ, µ).

Definition 3.2. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two measure spaces. A bijective set-to-

set map Ψ from Σ1 onto Σ2, defined modulo null sets, is called a regular set isomorphism

if

(i) Ψ(Ω1 \A) = Ψ(Ω1) \Ψ(A) for all A ∈ Σ1;

(ii) Ψ(

∞⋃
n=1

An) =

∞⋃
n=1

Ψ(An), for disjoint An ∈ Σ1;

(iii) µ2(Ψ(A)) = 0 if and only if µ1(A) = 0.
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Every regular set isomorphism Ψ induces a unique bijective linear transformation ψ sending

Σ1-measurable functions to Σ2-measurable functions satisfying that

ψ(1A) = 1Ψ(A) for all A ∈ Σ1.

Here 1A denotes the indicator function of the measurable set A.

Theorem 3.3. Let ϕ : Lp+(Ω1,Σ1, µ1) → Lp+(Ω2,Σ2, µ2) be a bijective map, where 1 < p ≤
∞. Suppose ϕ preserves norm of sums of positive functions, that is,

‖x+ y‖ = ‖ϕ(x) + ϕ(y)‖, x, y ∈ Lp+(Ω1,Σ1, µ1). (3.1)

Then ϕ extends to a surjective linear isometry from Lp(Ω1,Σ1, µ1) onto Lp(Ω2,Σ2, µ2). More

precisely, there exists a regular set isomorphism Ψ from Σ1 onto Σ2 inducing a surjective

positive linear map ψ : Lp(Ω1,Σ1, µ1)→ Lp(Ω2,Σ2, µ2), and a locally measurable function h

on Ω2 such that

ϕ(x) = h · ψ(x), ∀x ∈ Lp+(Ω1,Σ1, µ1). (3.2)

When 1 < p < +∞, we have∫
Ψ(A)

|h(t)|pdµ2 = µ1(A), for each σ-finite A ∈ Σ1. (3.3)

In other words, |h|p =
d(µ1 ◦Ψ−1)

dµ2
is the Radon-Nikodym derivative of µ1 ◦Ψ−1 with respect

to µ2. When p = +∞, we have

h(y) = 1, locally almost everywhere on Ω2. (3.4)

The case p = +∞ of Theorem 3.3 can be derived from a current result of Molnár [8,

Theorem 2.7] which states that every surjective norm of sum preserver ϕ : M+ → N+

between positive cones of von Neumann algebras M and N extends to a Jordan isomorphism

J : M → N . In the abelian case, J = hψ satisfies the conditions (3.2) and (3.4).

Proof of Theorem 3.3 when 1 < p < +∞. Since Lp(µ) spaces are strictly convex Banach lat-

tice with smooth and strictly monotone norms, by Lemma 2.2 and Theorem 2.4 we have

(I) ϕ preserves disjointness, i.e., ϕ(x)⊥ϕ(y) if and only if x⊥y for all x, y ∈ Lp+(Ω1,Σ1, µ1);

(II) ϕ(x+ y) = ϕ(x) + ϕ(y) and ϕ(λx) = λϕ(x) for all x, y ∈ Lp+(Ω1,Σ1, µ1) and λ ≥ 0.

We first assume that µ1(Ω1) < +∞. Set

Ψ(A) = suppϕ(1A), ∀A ∈ Σ1,

where the support of any measurable function is the measurable set supp(x) = {t ∈ Ω :

x(t) > 0}. We claim that Ψ defines a regular set isomorphism from Σ1 to Σ2.

(1) If A,B ∈ Σ1 are disjoint, then 1A · 1B = 0, and by (I), ϕ(1A) · ϕ(1B) = 0. In other

words, ϕ(1A) and ϕ(1B) have disjoint supports (modulo sets of measure zero). It follows
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that Ψ(A ∪ B) = Ψ(A) ∪ Ψ(B) (modulo sets of measure zero). It follows that Ψ(Ω \ A) =

Ψ(Ω) \Ψ(A).

(2) Let A =

∞⋃
n=1

An be a countable disjoint union of sets in Σ1. Setting B = A \
n⋃
i=1

Ai, we

have

ϕ(1A\B) + ϕ(1B) = ϕ(1A) and ϕ(1A\B) = ϕ(
n∑
i=1

1Ai) =
n∑
i=1

ϕ(1Ai).

Therefore

‖ϕ(1A)−
n∑
i=1

ϕ(1Ai)‖ = ‖ϕ(1A)− ϕ(1A\B)‖

= ‖ϕ(1B)‖ = ‖1B‖ → 0, as n→ +∞.

Hence, ϕ(1A) =

∞∑
n=1

ϕ(1An), and then Ψ(A) =

∞⋃
n=1

Ψ(An).

(3) Final, we observe that if µ2(Ψ(A)) = 0, then ϕ(1A) = 0 µ2-a.e., and so µ1(A) = 0

because ‖1A‖ = ‖ϕ(1A)‖. Dealing with ϕ−1 we see that µ1(A) = 0 implies µ2(Ψ(A)) = 0.

We conclude from (1)-(3) that Ψ is a regular set isomorphism from Σ1 onto Σ2.

Observe

‖ϕ(1Ω1)‖ = ‖1Ω1‖ = µ1(Ω1) < +∞.
Therefore the support Ω2 of the p-integrable function ϕ(1Ω1) is σ-finite. Let h(t) = ϕ(1Ω1).

For any A ∈ Σ1, we have

h = ϕ(1A) + ϕ(1Ω1\A).

Since the functions on the right have disjoint supports, ϕ(1A)(t) agrees with h(t) whenever

ϕ(1A)(t) is not zero (µ2-a.e.). Therefore,

ϕ(1A)(t) = h(t)1Ψ(A)(t) = h(t)ψ(1A)(t) (µ2-a.e.).

By the positive linearity (II) of ϕ, the equality (3.2) holds for every nonnegative simple

function x on Ω1. Since ϕ is an isometry for all x ∈ Lp+(Ω1,Σ1, µ1), we have for each A ∈ Σ1

that ∫
Ψ(A)

|h(t)|pdµ2 = ‖ϕ(1A)‖p = ‖1A‖p = µ1(A).

Since |h|p =
d(µ1 ◦Ψ−1)

dµ2
, the map 1A 7→ h1Ψ(A) extends to a surjective positive linear

isometry from Lp(Ω1,Σ1, µ1) onto Lp(Ω2,Σ2, µ2) sending x to hψ(x). Composing the inverse

of this map with ϕ, we can assume ϕ : Lp+(Ω1,Σ1, µ1)→ Lp+(Ω1,Σ1, µ1) satisfying that

ϕ(y) = y, whenever y is a nonnegative simple function on Ω1.

In general, let x ∈ Lp+(Ω1,Σ1, µ1). We have

‖ϕ(x)− y‖ = ‖ϕ(x)− ϕ(y)‖ = ‖x− y‖,
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whenever y is a nonnegative simple function on Ω1. Since nonnegative simple functions are

norm dense in Lp+(Ω1,Σ1, µ1), we have

‖ϕ(x)− y‖ = ‖x− y‖, ∀y ∈ Lp+(Ω1,Σ1, µ1).

Putting y = x, we see that ϕ(x) = x for all x in Lp+(Ω1,Σ1, µ1). Therefore, in the original

setting,

ϕ(x) = h(x)ψ(x), ∀x ∈ Lp+(Ω1,Σ1, µ1).

In the σ-finite case, we write Ω1 =
⋃
n

Ω1,n as a countable union of disjoint measurable

sets of finite measure. For each n, let Ω2,n be the support of ϕ(1Ω1,n), which is a σ-finite

measurable set in Σ2. Clearly, Ω2 =
⋃
n

Ω2,n as a countable union of disjoint σ-finite mea-

surable sets. Let Σi,n be the σ-algebra of all measurable subsets of Ωi,n and µi,n be the

measure on Σi,n induced by µi for i = 1, 2 and n = 1, 2, . . .. Then, ϕ induces a bijective map

ϕn : Lp+(Ω1,n,Σ1,n, µ1,n)→ Lp+(Ω2,n,Σ2,n, µ2,n) preserving norm of sums for each n = 1, 2, . . ..

It follows from the finite case that for each n, we have a measurable function hn on Ω2,n

with |hn|p =
d(µ1,n ◦Ψ−1

n )

dµ2,n
, and a regular set isomorphism Ψn : Σ1,n → Σ2,n, such that

ϕn(xn) = hnψn(xn). Here, xn = x1Ω1,n ∈ Lp+(Ω1,n,Σ1,n, µ1,n) for any x in Lp+(Ω1,Σ1, µ1)

and ψn : Lp(Ω1,n,Σ1,n, µ1,n) → Lp(Ω2,n,Σ2,n, µ2,n) is the linear isomorphism induced by Ψn

for n = 1, 2, . . .. Set Ψ(A) =
⋃
n

Ψn(A ∩ Ω1,n) and h(t) = hn(t) whenever t ∈ Ψ(Ω1,n), and

h(t) = 0 whenever t ∈ Ω2 \Ψ(Ω1). In this way, both (3.2) and (3.3) are satisfied.

Now, we deal with the general case. For any σ-finite set A in Σ1, arguing as above we see

that Ψ(A) is also σ-finite. We can thus obtain a pair (hA, ψA) of measurable function hA on

Ψ(A) and linear isomorphism ψA : Lp(ΩA,ΣA, µA) → Lp(ΩΨ(A),ΣΨ(A), µΨ(A)) in a similar

fashion. For any such two pairs (hA, ψA) and (hB, ψB), if A ⊆ B then ψB(xA) = ψA(xA) for

all x in Lp(Ω1,Σ1, µ1), with xA = x1A and xB = x1B. Define a local measurable function

h on Ω2 and a linear isomorphism ψ : Lp(Ω1,Σ1, µ1) → Lp(Ω2,Σ2, µ2) by union. In other

words, h is determined by the condition

h1Ψ(A) = hA, for all σ-finite A in Σ1.

On the other hand, for any x in Lp(Ω1,Σ1, µ1) the support of x is a σ-finite measurable set

A. Then

ψ(x) = ψA(x) = ψB(x), for all σ-finite µ1-measurable set B containing A

It is then routine to check the conditions (3.2) and (3.3). �

Remark 3.4. (a) When p = 1, we have a negative answer to Problem 1.1, against Theorem

2.4 for the case 1 < p ≤ +∞, as shown in Example 4.1(a).

(b) In proving Theorem 3.3 for the case 1 < p < +∞, we are motivated by the approach

of verifying the classical Lamperti theorem (see, e.g., [2, Theorem 3.2.5]). We choose to
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present all the details here due to the intension of extending it to the case of noncommu-

tative Lp(M) space associated to a von Neumann algebra in [13].

4. A concrete example for finite dimensional `p spaces

In this section, we provide a counter example to Problem 1.1 of a norm of sum preserver

of the positive cone of the finite dimensional space `pn with p = 1.

Example 4.1. Suppose a surjective map ϕ : `pn+ 7→ `pn+ preserves norm of sums, that is,

‖ϕ(x) + ϕ(y)‖ = ‖x + y‖, ∀x,y ∈ `pn+.

(a) ϕ may not have any linear extension when p = 1. For example, define

ϕ(x) = Urx, whenever ‖x‖1 = r,

where Ur is an n× n permutation matrix associated to r ≥ 0. When Ur are different for

different r, we have a counter example to Problem 1.1.

(b) When 1 < p < ∞, the permutation matrix Ur defining ϕ(x) = Urx whenever ‖x‖ = r

must be the same for all r ≥ 0 by Theorem 3.3.

(c) When p = +∞, we have ϕ(x) = Ux for a fixed permutation matrix U .

Proof. We verify the case when p =∞ only. The proof divides into three steps.

Step 1: Suppose x1 = (λ, 0, · · · , 0), x2 = (0, λ, · · · , 0), xn = (0, · · · , 0, λ), for some λ > 0,

and yi = ϕ(xi) = (yi1, yi2, · · · , yin).

We have 0 ≤ yik ≤ λ and max
1≤k≤n

{yik} = λ, because ‖ϕ(xi)‖∞ = ‖xi‖∞ = λ for each i.

Suppose that y1σ(1) = λ. Then yiσ(1) = 0 due to

λ = ‖x1 + xi‖∞ = ‖ϕ(x1) + ϕ(xi)‖∞, ∀i = 2, · · · , n.

We can then assume that y2σ(2) = λ. Argue similarly, we see that yiσ(2) = 0 for all 1 ≤ i ≤ n
and i 6= 2. By induction, we obtain a permutation σ on {1, 2, · · · , n} such that ϕ(xi) = xσ(i).

Step 2: Suppose that x̃1 = (µ, 0, · · · , 0), x̃2 = (0, µ, · · · , 0), x̃n = (0, · · · , 0, µ), for some

µ > 0, and ϕ(x̃i) = x̃σ̃(i) for µ 6= λ. It follows from ‖xi + x̃i‖∞ = ‖ϕ(xi) + ϕ(x̃i)‖∞ that

σ = σ̃.

Step 3: Suppose that ϕ(xi) = xσ(i). Set arbitrary x0 = (x01, x02, · · · , x0n), and y0 =

ϕ(x0) = (y01, y02, · · · , y0n). Choose λ sufficiently large. It follows from ‖x0 + xi‖∞ =

‖ϕ(x0) +ϕ(xi)‖∞ that x0i+λ = y0σ(i) +λ. Hence, y0σ(i) = x0i. Thus, the same permutation

matrix U defines y = Ux. �

References

[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York-London, 1985.



10 JUN ZHANG, MING-CHENG TSAI† AND NGAI-CHING WONG

[2] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: Function Spaces, vol. 1, CRC Press,

2003.

[3] R. J. Fleming and J. E. Jamison, Isometries in Banach Spaces: Vector-valued Function Spaces and

Operator Spaces, vol. 2, CRC Press, 2007.

[4] H. Hudzik, A. Kaminska and M. Mastylo, Monotonicity and rotundity properties in Banach lattices,

Rocky Mount. J. Math, 30 (2000), 933–950.

[5] D.-L. Kuo, M.-C. Tsai, N.-C. Wong and J. Zhang, Maps preserving Schatten p-Norms of convex combi-

nations, Abstr. Appl. Anal. 2014 (2014), Article ID 520795.

[6] S. Mazur and S. Ulam, Sur les transformations isométriques d’espaces vectoriels normés, C. R. Acad. Sci.

Paris, 194 (1932), 946–948.

[7] L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces,

Springer-Verlag, Berlin, 2007.

[8] L. Molnár, Spectral characterization of Jordan-Segal isomorphisms of quantum observables, J. Operator

Theory, to appear.

[9] G. Nagy, Isometries on positive operators of unit norm, Publ. Math. Debrecen, 82 (2013), 183–192.

[10] G. Nagy, Preservers for the p−norm of linear combinations of positive operators, Abstr. Appl. Anal. 2014

(2014), Art. ID 434121.

[11] P. M. Nieberg, Banach lattices, Springer-Verlag, Berlin Heidelberg New York, 1991.

[12] K. Sundaresan and S. Swaminathan, Orthogonality and linear homomorphisms in Banach lattices, in

Geometry of normed linear spaces (Urbana-Champaign, III., 1983), 163-169, Contemp. Math., 52, Amer.

Math. Soc., Providence, RI, 1986.

[13] J. Zhang, M.-C. Tsai and N.-C. Wong, Norm of positive sum preservers of noncommutative Lp(M) spaces,

preprint.

(Zhang) School of Mathematics and Statistics, Central China Normal University, Wuhan,

Hubei 430079, China.

Email address, Zhang: zhjun@mail.ccnu.edu.cn

(Tsai) General Education Center, Taipei University of Technology 10608, Taiwan.

Email address: mctsai2@mail.ntut.edu.tw

(Wong) Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung

80424, Taiwan.

Email address, Wong: wong@math.nsysu.edu.tw


	1. Introduction
	2. The case of smooth Banach lattices
	3. Norm of sums preservers of Lp+(,,)
	4. A concrete example for finite dimensional p spaces
	References

